Formulae And Tables

The Icfai University Press

Formulae and Tables

```
Board of EditorS : Prof. V R K Chary, CFA
    Mr. S Sarkar, CFA
    Mr. Prakash Bhattacharya, CFA
    Ms. V D M V Lakshmi, CFA
ISBN
: 81-7881-261-4
```

©The ICFAI University, All rights reserved.

This book contains information obtained from authentic and highly regarded sources. Although every care has been taken to avoid errors and omissions, this publication is being sold on the condition and understanding that the information given in this book is merely for reference and must not be taken as having authority of or binding in any way at the editors, publishers or sellers.

Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording or by any information storage or retrieval system, without prior permission in writing from the copyright holder.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Only the publishers can export this book from India. Infringement of this condition of sale will lead to civil and criminal prosecution.

Published by ICFAI University Press, 52, Nagarjuna Hills, Hyderabad, India - 500082.
Phone : (+91) (040) 23430-368, 369, 370, 372, 373, 374
Fax : (+91)(040) 23352521, 23435386
E-mail : icfaibooks@icfai.org, ssd@icfai.org
Website : www.icfaipress.org/books
First Edition : 2004
Printed in India

Bulk Discounts

ICFAI Books are available at special quantity discounts when purchased in bulk by libraries, colleges, training institutions and corporates. For information, please write to Institutional Marketing Division, ICFAI Books, 52, Nagarjuna Hills, Hyderabad, India - 500082.

Phone : (+91) (040) 234353-87, 88, 89, 90,
23430 - 368, 369, 370, 372, 373, 374
Fax : (+91) (040) 23352521, 23435386
E-mail : icfaibooks@icfai.org, ssd@icfai.org, info@icfai.org.

Contents

Preface

A. Formulae

Section I: Actuarial Principles and Practice 1

- Measurement of Interest 1
- Introduction to Annuities 2
- Demography 8
- Survival Models 9
- Mortality Tables 9
- Assurance and Annuity Benefits 10
- Premiums for Assurance and Annuity Plans 13
- Credibility Theory 16
- Loss Distributions and Risk Models 17
- Policy Values 19
- Surplus and it's Distribution 19
Section II: Economics 20
- Supply and Demand Analysis 20
- Consumer Behavior and Analysis 21
- Production Analysis 22
- Analysis of Costs 22
- Market Structure: Perfect Competition 23
- Market Structure: Monopoly 24
- Market Structure: Oligopoly 24
- Measurement of Macro Economic Aggregates 24
- The Simple Keynesian Model of Income Determination 25
- Income Determination Model including Money and Interest 25
- Money Supply and Banking System 26
- The Open Economy and Balance of Payments 26
- Modern Macro Economics: Fiscal Policy, 27
Budget Deficits and Government Debt
Section III: Financial Management 28
- Time Value of Money 28
- Risk and Return 29
- Valuation of Securities 31
- Financial Statement Analysis 32
- Financial Forecasting 33
- Leverages 34
- Cost of Capital 35
- Capital Structure 36
- Dividend Policy 37
- Estimation of Working Capital Needs 38
- Inventory Management 39
- Receivables Management 39
- Cash Management 41
- Capital Expenditure Decisions 41
Section IV: Financial Risk Management 43
- Corporate Risk Management 43
- Futures 43
- Options 45
- Swaps 48
- Sensitivity of Option Premiums 48
- Value at Risk 49
Section V: International Finance 50
- The Foreign Exchange Market 50
- Exchange Rate Determination 50
- International Project Appraisal 51
- International Equity Investments 51
- Short-term Fínancial Management 52
Section VI: Investment Banking and Financial Services 53
- Money Market 53
- Rights Issues 53
- Lease Evaluation 53
- Hire Purchase 55
- Consumer Credit 56
- Housing Finance 57
- Venture Capital 57
Section VII: Management Accounting 58
- Cost-Volume-Profit Analysis 58
- Standard Costing and Variance Analysis 59
Section VIII: Portfolio Management 61
- Capital Market Theory 61
- Arbitrage Pricing Theory (APT Model) 61
- Asset Allocation 62
- Delineating Efficient Frontiers 62
- Portfolio Analysis 62
- Portfolio Performance 64
- Bond Portfolio Management 65
Section IX: Project Management 66
- Appraisal Criteria 66
- Risk Analysis in Capital Investment Decisions 66
- Application of Portfolio Theories in Investment Risk Appraisal 67
- Social Cost Benefit Analysis 67
- Options in Investment Appraisal 67
- Project Scheduling 68
- Project Monitoring and Control 68
Section X: Quantitative Methods 70
- Basics of Mathematics 70
- Calculus 70
- Interpolation and Extrapolation 72
- Central Tendency and Dispersion 73
- Probability 75
- Probability Distribution and Decision Theory 76
- Statistical Inferences 78
- Simple Linear Regression and Correlation 79
- Multiple Regression 80
- Time Series Analysis 80
- Index Numbers 81
- Quality Control 82
- Chi-Square Test and Analysis of Variance 83
Section XI: Security Analysis 85
- Bond Valuation 85
- Equity Stock Valuation Model 87
- Technical Analysis 87
- Warrants and Convertibles 88
- Real Assets and Mutual Funds 88
Section XII: Strategic Financial Management 89
- Capital Structure 89
- Decisions Support Models 89
- Working Capital Management 90
- Firms in Financial Distress 91
- Valuation of Firms 91
- Mergers and Acquisitions 91
B. Tables 93

1. Interest Rate Tables: 95

- Future Value Interest Factor 95-96
- Future Value Interest Factor for an Annuity 97-98
- Present Value Interest Factor 99-100
- Present Value Interest Factor for an Annuity 101-102

2. Standard Normal Probability Distribution Table 103
3. t Distribution Table 104
4. Area in the Right Tail of a Chi-Square $\left(\chi^{2}\right)$ Distribution Table 105-106
5. F Distribution Table 107-108
6. Control Chart Factors Table 109
7. Table for Value of Call Option as Percentage of Share Price 110-111
8. Table for $\mathrm{N}(\mathrm{x})$ 112-113
9. Table for Relationship between Nominal and Effective Rates of 114-115 Interest and Discount
C. Formulae Index116

FORMULAE

I. Actuarial Principles and Practice

1. Measurement of Interest

i. Future Value of a lump sum (Single Flow)
$\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}}$
Where,
$\mathrm{FV}_{\mathrm{n}}=$ Future value of the initial flow n years hence
$\mathrm{PV}=$ Initial cash flow
i = Annual Rate of Interest
$\mathrm{n} \quad=\quad$ Life of investment
ii. Doubling Period $=0.35+\frac{69}{\text { Interest Rate }}$
iii. Future value of a lump sum with increased frequency of compounding
$\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}\left(1+\frac{\mathrm{i}}{\mathrm{m}}\right)^{\mathrm{m} \times \mathrm{n}}$
Where,
$\mathrm{FV}_{\mathrm{n}}=$ Future value after ' n ' years
$\mathrm{PV}=$ Cash flow today
i $=$ Nominal Interest Rate per Annums
$\mathrm{m}=$ Number of times compounding is done during a year
$\mathrm{n} \quad=\quad$ Number of years for which compounding is done
iv. The relationship between Effective vs. Nominal Rate of Interest
$\mathrm{r}=\left(1+\frac{\mathrm{i}}{\mathrm{m}}\right)^{\mathrm{m}}-1$
Where,

r	$=$	Effective rate of interest
i	$=$	Nominal rate of interest
m	$=$	Frequency of compounding per year

v. Accumulated value of an Annuity
$\mathrm{FVA}_{\mathrm{n}}=\mathrm{A}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right]=\mathrm{s}_{\mathrm{n}}$
Where,
$\mathrm{FVA}_{\mathrm{n}}=\quad$ Accumulation at the end of n years
A $=$ Amount deposited/invested at the end of every year for n years
i $\quad=\quad$ Rate of interest (expressed in decimals)
$\mathrm{n}=$ Time horizon or number of installments
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ Accumulated value of an annuity
vi. \quad Sinking Fund factor $=\left[\frac{\mathrm{i}}{(1+\mathrm{i})^{\mathrm{n}}-1}\right]$

Where,
i $=$ Rate of interest
$\mathrm{n} \quad=\quad$ Number of years
vii. Present Value Interest Factor of an Annuity, $a_{n}=\frac{(1+i)^{n}-1}{i(1+i)^{n}}$

Where,
i $=$ Rate of interest
$\mathrm{n} \quad=\quad$ Number of years
viii. Capital Recovery Factor
$A=\frac{i(1+i)^{n}}{(1+i)^{n}-1}$
Where,
i $=$ Rate of interest
$\mathrm{n} \quad=\quad$ Number of years
ix. Present Value of a Perpetuity
$\mathrm{a}_{\infty}=\frac{1}{\mathrm{i}}$
Where,
i $=$ Rate of interest.
2. Introduction to Annuities
i. Present Value of an Immediate Annuity Certain, $a_{n}=\frac{\left(1-v^{n}\right)}{i}$

Where,
$a_{\mathrm{n}} \quad=\quad$ Present value of an Annuity
$\mathrm{v}^{\mathrm{n}} \quad=\quad$ Present value of the nth payment payable at the end of the nth year
$=\quad 1 /(1+i)^{n}$
ii. Present Value of a Deferred Annuity Certain $=m a_{n}=v^{m} a_{n}$

Where,
$\mathrm{m}=$ Deferment period
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
i $=$ Rate of interest
iii. Accumulated Value of a Deferred Annuity Certain, $(1+i)^{m} \mathrm{~s}_{\mathrm{n}}$

Where,
$\mathrm{m}=$ Deferment period
$\mathrm{n} \quad=\quad$ Number of Annuity Installments
i $=$ Rate of interest
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ Accumulated value of an Annuity
iv. Present Value of an Annuity Due, $\ddot{a}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{a}_{\mathrm{n}}$

Where,
$\mathrm{a}_{\text {n }} \quad=\quad$ Present value of an Immediate Annuity Certain
$\mathrm{n} \quad=\quad$ The number of annuity installments
i $=$ The rate of interest
v. Accumulated Value of an Annuity Due, $\ddot{\mathrm{s}}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{s}_{\mathrm{n}}$

Where,
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ Present value of an Immediate Annuity Certain
$\mathrm{n} \quad=\quad$ The number of annuity installments
i $=$ The rate of interest
vi. Present value of a deferred annuity due of Re. one p.a. for a term of n years certain and the deferment period is being m years
$=m \mid \ddot{a}_{\bar{n}}=v^{m} \ddot{a}_{\bar{n}}$
Where,
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
i $\quad=\quad$ The rate of interest
$\ddot{a}_{\bar{n} \mid}=\quad$ Present value of an Annuity due
vii. Accumulated value of a deferred annuity due of Re. one p.a. for a term of n years certain and the deferment period is being m years
$=\mathrm{m} \mid \ddot{\mathrm{B}}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{s}_{\mathrm{n}}$
Where,
i $\quad=\quad$ The rate of interest
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ The accumulated value of an annuity
viii. Present value of an immediate perpetuity, $\mathrm{a}_{\infty}=\frac{1}{\mathrm{i}}$

Where,
i $=$ The rate of interest
ix. Present value of a perpetuity due, $\ddot{a}_{\infty}=\frac{1}{d}$

Where,
$\mathrm{d} \quad=\quad$ The rate of discounting $=\mathrm{v} . \mathrm{i}=\frac{\mathrm{i}}{1+\mathrm{i}}$
x. Present value of a deferred Perpetuity with deferment period of m years, where the first payment is to be made immediately on completion of m years
$=m \left\lvert\, \ddot{a}_{\infty \mid}=\frac{\mathrm{v}^{\mathrm{m}-1}}{\mathrm{i}}\right.$
Where,
i $=$ The rate of interest
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
xi. Present value of a deferred Perpetuity with deferment period of m years, where first payment is made one year after completion of m years $\frac{v^{m}}{i}$

Where,
i $=$ The rate of interest
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
xii. Present Value of an Immediate Increasing Annuity
a. $\quad(\text { Ia })_{n}=\left[\ddot{a}_{\bar{n}}-n v^{n}\right] / i=a_{n}+\frac{a_{n}-n v^{n}}{i}$

Where,
$\ddot{a}_{\text {n }} \quad=\quad$ The present value of an annuity due
$a_{n} \quad=\quad$ The present value of an annuity certain
n $\quad=\quad$ Number of installments
i $=$ The rate of interest
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
b. Present value of an increasing annuity due $(\text { Iä })_{n \mid}=\ddot{a}_{n}+\frac{\ddot{a}_{\bar{n}}-n v^{n}}{i}$

Where,
$\ddot{a}_{\text {n }} \quad=\quad$ The present value of an annuity due
$\mathrm{n}=\quad$ Number of installments
i $=$ The rate of interest
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
c. Accumulated value of an increasing annuity due
$\left(\mathrm{I} \stackrel{)_{n}}{ }=\ddot{\mathrm{s}}_{\mathrm{n}}+\frac{\ddot{\mathrm{s}}_{\overline{\mathrm{n}}}-\mathrm{n} \times(1+\mathrm{i})}{\mathrm{i}}\right.$
Where,
$\ddot{s}_{n} \quad=\quad$ The Accumulated value of an annuity due
$\mathrm{n}=\quad$ Number of installments
i $=$ The rate of interest
xiii. Present Value of an Immediate Increasing Perpetuity, $(\mathrm{Ia})_{\infty}=\frac{1}{\mathrm{i}}+\frac{1}{\mathrm{i}^{2}}$

Where,
i $=$ The rate of interest
xiv. Present Value of an Increasing Perpetuity Due, $\quad(\mathrm{I} \ddot{a})_{\infty}=\frac{1}{d^{2}}$

Where,
$\mathrm{d} \quad=\quad$ The rate of discounting $=\frac{\mathrm{i}}{1+\mathrm{i}}$
i $=$ The rate of interest
xv. The Present Value of an Increasing Annuity wherein the consecutive periodical annuity payments are in an Arithmetic Progression $=A a_{n}+D\left(\frac{a_{n}-n v^{n}}{i}\right)$

Where,
$\mathrm{A}=$ The payment at the end of first year
D $\quad=\quad$ The common difference
$\mathrm{a}_{\mathrm{n}} \quad=\quad$ The present value of an Annuity certain
$\mathrm{n} \quad=\quad$ The number of installments
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
i $\quad=\quad$ The rate of interest
xvi. The Present Value of an Increasing Annuity wherein the consecutive periodical annuity payments are in a Geometric Progression
$=\mathrm{A}\left[\frac{1-\mathrm{R}^{\mathrm{n}} \mathrm{v}^{\mathrm{n}}}{(1+\mathrm{i})-\mathrm{R}}\right]$
Where,
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
$\mathrm{R}=$ The common multiple
i $\quad=\quad$ The rate of interest
$\mathrm{n}=$ The number of installments
$\mathrm{A}=$ The amount of first installment
xvii. Accumulated Value of Increasing Immediate Annuity by Re. One per annum
$=(\mathrm{Is})_{\mathrm{n}}=\mathrm{s}_{\mathrm{n})}+\frac{\mathrm{s}_{\mathrm{n}}-\mathrm{n}}{\mathrm{i}}$
Where,

$$
\begin{array}{ll}
\mathrm{s}_{\mathrm{n}} & =\text { Accumulated value of an Annuity certain } \\
\mathrm{n} & =\text { Number of annuity installments } \\
\mathrm{i} & =\text { The rate of interest }
\end{array}
$$

xviii. The Accumulated Value of an Increasing Annuity wherein the consecutive periodical annuity payments are in an Arithmetic Progression
$=A \cdot s_{\mathrm{n}}+\mathrm{D}\left(\frac{\mathrm{s}_{\mathrm{n}}-\mathrm{n}}{\mathrm{i}}\right)$
Where,
$\mathrm{A}=$ The amount of first installment
$\mathrm{D}=$ The amount of common difference
$\mathrm{n}=$ The number of installments
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ The accumulated value of an annuity certain
i $\quad=\quad$ The rate of interest
xix. The Accumulated Value of an Increasing Immediate Annuity wherein the consecutive periodical annuity payments are in a Geometric Progression
$A \frac{(1+i)^{n}-R^{n}}{(1+i)-R}$
Where,
$\mathrm{A}=$ The amount of first installment
$\mathrm{R}=$ The common ratio
i $\quad=\quad$ The rate of interest
$\mathrm{n}=$ The number of installments
xx. Present Value of an Immediate Annuity of Re. 1 p.a. for a term of n years under which payments are made p times a year
$a_{n}^{(p)}=a_{n} \times \frac{i}{i^{(p)}}$
Where,
i $=$ The rate of interest per annum
$a_{n} \quad=\quad$ The present value of an Annuity certain
$\mathrm{i}^{(\mathrm{p})}=\left[(1+\mathrm{i})^{\mathrm{p}}-1\right] \times \mathrm{p}$
xxi. Accumulated Value of an Immediate Annuity of Re. 1 p.a. for a term of n years under which payments are made p times a year
$s_{\bar{n}}^{(\mathrm{p})}=\mathrm{s}_{\mathrm{n}}\left(\frac{\mathrm{i}}{\mathrm{i}^{(\mathrm{p})}}\right) \times \mathrm{v}$
Where,
i $\quad=\quad$ The rate of interest per annum
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ The Accumulated value of an Annuity certain
$\mathrm{i}^{(\mathrm{p})} \quad=\quad\left[(1+\mathrm{i})^{\mathrm{p}}-1\right] \times \mathrm{p}$
xxii. Present Value of an Annuity Due of Re. 1 p.a. for n years under which payments are made ' p ' times a year
$\ddot{a}_{n}^{(p)}=a_{n}\left(\frac{i}{i^{(p)}}+\frac{i}{p}\right)$
Where,
i $=$ The rate of interest per annum
$\mathrm{a}_{\mathrm{n}} \quad=\quad$ The present value of an Annuity certain
$\mathrm{i}^{(\mathrm{p})}=\left[(1+\mathrm{i})^{\mathrm{p}}-1\right] \times \mathrm{p}$
xxiii. Accumulated Value of an Annuity Due of Re. 1 p.a. for n years under which payments are made ' p ' times a year

$$
\ddot{s}_{\mathrm{n} \mid}^{(\mathrm{p})}=\mathrm{s}_{\mathrm{n}}\left(\frac{\mathrm{i}}{\mathrm{i}^{(\mathrm{p})}}+\frac{\mathrm{i}}{\mathrm{p}}\right)
$$

Where,
i $=$ The rate of interest per annum
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ The accumulated value of an Annuity certain
$\mathrm{i}^{(\mathrm{p})}=\left[(1+\mathrm{i})^{\mathrm{p}}-1\right] \times \mathrm{p}$
xxiv. An immediate annuity for n years where payment of ' r ' are made at each interval of ' r ' years, n being an exact multiple of ' r ' and the number of payments being $\frac{n}{r}$
a. Present value of the above Annuity $=a_{n \mid}^{(1 / \mathrm{r})}=\frac{\mathrm{ra}_{\mathrm{n}}}{\mathrm{s}_{\mathrm{r}}}$

Where,
$a_{n} \quad=\quad$ The present value of an Annuity certain for n years
$s_{r} \quad=\quad$ The accumulated value of an Annuity for r years
b. Accumulated value of the above annuity $s_{n}^{(1 / \mathrm{r})}=\frac{\mathrm{rS}_{\mathrm{n}}}{\mathrm{s}_{\mathrm{r}}}$

Where,

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{n}}=\text { The present value of an Annuity certain for } n \text { years } \\
& \mathrm{s}_{\mathrm{r}}=\text { The accumulated value of an Annuity for } \mathrm{r} \text { years }
\end{aligned}
$$

xxv. Present value and accumulated value of an annuity due for n years where payments of ' r ' are made at interval of ' r ' years, n being exact multiple of ' r '
a. Present value: $\ddot{a}_{n}^{(1 / \mathrm{r})}=r \frac{a_{n}}{a_{n}}$
Where,
$a_{n}=$ The present value of an Annuity certain for n years
$a_{\mathrm{r}}=$ The present value of an Annuity for r years
b. Accumulated value: $\ddot{s}_{\bar{n}}^{(1 / \mathrm{r})}=r \frac{\mathrm{~s}_{\mathrm{n}}}{\mathrm{a}_{\mathrm{r}}}$

Where,
$\mathrm{s}_{\mathrm{n}} \quad=\quad$ The present value of an Annuity certain for n years
$\mathrm{a}_{\mathrm{r}} \quad=\quad$ The present value of an Annuity for r years
xxvi. Capital Redemption Policies
a. The Amount of Annual Premium

$$
P_{n}=\frac{1}{s_{n+1}-1}
$$

Where,

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{n}+1}= \\
& \text { The Accumulated value of an Annuity certain for a period of } \\
& n+1 \text { years at a rate of interest of } i \text { per annum }
\end{aligned}
$$

b. Single Premium $A_{\bar{n}}=\frac{1}{(1+i)^{n}}=v^{n}$

Where,
i $\quad=\quad$ The rate of interest per annum
$\mathrm{n} \quad=\quad$ The number of years
xxvii. Average Interest Yield on the Life Fund $=\frac{2 I}{A+B-I}$

Where,
$\mathrm{A}=$ The fund at the beginning
B $\quad=\quad$ The fund at the end of the year
I $\quad=$ The interest earned during the year after payment of tax
xxviii. Office premium $A_{n}^{\prime}=A_{n}+1 A_{n}^{\prime}$

Where,
$\mathrm{A}_{\mathrm{n}} \quad=\quad$ Pure premium
$1=$ Premium loading factor.

3. Demography

i. \quad Crude Death Rate $=\frac{D}{P} \times 1000$

Where,
D stands for total number of deaths in a given year, and P stands for the size of the mid year population.
ii. Fertility Rates:
Number of births during a specified
a. Crude Fertility Rate (CFR)
period
(CR)
b. General Fertility Rate (GFR)

$=\frac{\text { Number of births during a specified }}{\text { period }}$| Total number of mid-year population of |
| :---: |
| women aged |
| between 15-49 |

$$
=\frac{\begin{array}{l}
\text { Number of births in a specified period to } \\
\text { women aged y years }
\end{array}}{\begin{array}{l}
\text { Total number of mid-year population of } \\
\text { women aged y years }
\end{array}}
$$

Age-Specific Fertility Rate, at age $y\left(\mathrm{ASFR}_{\mathrm{y}}\right)$
iii. Marriage Rates:

a. Crude Marriage Rate (CMR) $=\frac{$| Number of marriages taken place |
| :---: |
| during a specific period |}{Total number of mid-year population}

b. General Marriage Rate $(\mathrm{GMR})=\frac{\mathrm{M}}{\mathrm{P}_{15+}} \times 1000$

Where,
M stands for the total number of marriages solemnized in a given period and P_{15+} stands for the mid-year population of age 15 years or more

Number of people moving in and out of
iv. Migration Rate of any area r
v. Dependency ratio

$$
=\frac{\text { Number of people moving in and out ot }}{\text { area in a specified period }} \begin{aligned}
& \text { Total number of population in area } \mathrm{r} \text { at } \\
& \text { the beginning of the time period }
\end{aligned}
$$

$=\frac{\text { Economically inactive population }}{\text { Economically active population }}$

4. Survival Models

i. The estimated probability of deaths in an interval computed per unit time, $F_{i}=\frac{P_{i}-P_{i+1}}{h_{i}}$
Where,
$\mathrm{F}_{\mathrm{i}} \quad=\quad$ Respective probability density in the ith interval
$\mathrm{P}_{\mathrm{i}} \quad=\quad$ Estimated cumulative proportion surviving at the beginning of the ith interval (at the end of the interval i-1)
$\mathrm{P}_{\mathrm{i}+1}=$ Cumulative proportion surviving at the end of the ith interval
$h_{i} \quad=\quad$ Width of the ith interval
ii. Exponential Distribution
$F(T)=\lambda e^{-\lambda T}=\frac{1}{m} e^{(-1 / m) T}$
Where,
$\lambda=$ Constant death rate in terms of deaths per unit of measurement
$\mathrm{m}=$ Mean time between deaths
$\mathrm{T}=$ Operating time, Life or age in hours, cycles, etc.
iii. Weibull Distribution
$f(T)=\frac{\beta}{\eta}\left(\frac{T}{\eta}\right)^{\beta-1} e^{-(T / \eta)^{\beta}}$
Where,

$$
\begin{array}{ll}
f(T) \geq 0, T \geq 0, \beta \geq 0 \text { and } \eta>0 \\
\eta & =\quad \text { Scale parameter } \\
\beta & =\quad \text { Shape parameter (or slope). }
\end{array}
$$

5. Mortality Tables

i. The probability that a person of age x years dies within one year
$\therefore \mathrm{q}_{\mathrm{x}}=\frac{\text { Number of deaths between age } \mathrm{x} \text { and } \mathrm{x}+1}{\text { Total number of persons living at age } \mathrm{x}}=\frac{\mathrm{d}_{\mathrm{x}}}{\mathrm{l}_{\mathrm{x}}}=\frac{1_{\mathrm{x}}-\mathrm{l}_{\mathrm{x}+1}}{1_{\mathrm{x}}}$
ii. The probability that a person of age x years survives another one year $\therefore \mathrm{p}_{\mathrm{x}}=\frac{\text { Number of survivors to age }(\mathrm{x}+1)}{\text { Total number of persons living at age } \mathrm{x}}=\frac{1_{\mathrm{x}+1}}{1_{\mathrm{x}}}$
iii. Expectation of life at age x is given by:

$$
\therefore \mathrm{e}_{\mathrm{x}}=\frac{\mathrm{N}_{\mathrm{x}+1}^{\prime}}{\mathrm{l}_{\mathrm{x}}}
$$

Where,

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{x}+1}^{\prime}=\sum_{\mathrm{t}=\mathrm{x}+1}^{\mathrm{w}-1} 1_{\mathrm{t}} \\
& \mathrm{w}=\text { Terminal age }
\end{aligned}
$$

iv. Central Death Rate: $\mathrm{m}_{\mathrm{x}}=\frac{2 \mathrm{q}_{\mathrm{x}}}{2-\mathrm{q}_{\mathrm{x}}}$

Where,
$\mathrm{q}_{\mathrm{x}} \quad=\quad$ The probability that a person of age x years dies within one year
v. The probability that a person of age x years survives another n years

$$
{ }_{\mathrm{n}} \mathrm{p}_{\mathrm{x}}=\frac{\text { No. of persons living at age } \mathrm{x}+\mathrm{n}}{\text { No. of persons living at age } \mathrm{x}}=\frac{1_{\mathrm{x}+\mathrm{n}}}{1_{\mathrm{x}}}
$$

vi. The probability that a person of age x years dies within the next n years

$$
I_{\mathrm{m}} \mathrm{q}_{\mathrm{x}}=\frac{\text { Total no. of persons dying between ages } \mathrm{x} \text { and } \mathrm{x}+\mathrm{m}}{\text { Total no. of persons living at age } \mathrm{x}}=\frac{1_{\mathrm{x}}-1_{\mathrm{x}+\mathrm{m}}}{1_{\mathrm{x}}}
$$

vii. The probability that a person of age x years will die within n years following m years from now $\mathrm{l}_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}=\frac{\text { No. of deaths between ages } \mathrm{x}+\mathrm{m} \text { and } \mathrm{x}+\mathrm{m}+\mathrm{n}}{\text { No. of persons living at age } \mathrm{x}}$
$=\quad \frac{1_{x+m}-1_{x+m+n}}{1_{x}}$

6. Assurance and Annuity Benefits

i. The present value of a term assurance of Re.1.00 payable on death during an n year period is given by
$A_{x: \bar{n} \mid}^{1}=\frac{1}{l_{x}}\left(v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\ldots . .+v^{n} d_{x+n-1}\right)$
Where,

x	$=$ Age of the person
n	$=$ Number of years the policy is in force
i	$=$ The rate of interest per annum
v	$=\frac{1}{1+\mathrm{i}}$
d_{x}	$=$ The number of deaths between age x and $\mathrm{x}+1$
l_{x}	$=$ Total number of persons living at age x

ii. The present value of benefit of Re. 1.00 payable to an insured against a pure endowment policy for n years taken at an age x is given by:
$A_{x}: \frac{1}{n} \left\lvert\,=v^{n} \times \frac{l_{x+n}}{l_{x}}\right.$
Where,
$x \quad=\quad$ Age of the person
$\mathrm{n} \quad=\quad$ Number of years the policy is in force
i $=$ The rate of interest per annum
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
$1_{\mathrm{x}} \quad=\quad$ Total number of persons living at age x
$1_{x+n}=$ Total number of persons living at age $\mathrm{x}+\mathrm{n}$
iii. The present value of benefit of Re. 1.00 payable to an insured against an endowment assurance policy for n years taken at an age x is given by:
$A_{x: n}=A_{x: n}^{1}+A_{x: n}^{1}$
Where,
$\mathrm{A}_{\mathrm{x}: \mathrm{n}}^{1}=$ The present value of benefit in a Term Insurance Policy
$\mathrm{A}_{\mathrm{x}: \mathrm{n}} \stackrel{1}{n}=$ The present value of benefit in a Pure Endowment Policy
iv. The present value of an increasing whole life assurance on the life of a person aged x at entry where the sum assured is Re. 1.00 in the first year, Rs. 2.00 in the second year, Rs.3.00 in the third year and so on, is given by:
$(I A)_{x}=\frac{1}{1_{x}}\left(v d_{x}+2 v^{2} d_{x+1}+3 v^{3} d_{x+2}+4 v^{4} d_{x+3}+\ldots\right)$
Where,
$x \quad=\quad$ Age of the person
$\mathrm{n} \quad=\quad$ Number of years the policy is in force
i $\quad=\quad$ The rate of interest per annum
$\mathrm{v}=\frac{1}{1+\mathrm{i}}$
$\mathrm{d}_{\mathrm{x}} \quad=\quad$ The number of deaths between age x and $\mathrm{x}+1$
$1_{\mathrm{x}}=$ Total number of persons living at age x
v. Commutation Functions:
a. $\quad D_{x}=v^{x} l_{x}$
b. $\quad C_{x}=v^{x+1} d_{x}$
c. $\quad M_{x}=C_{x}+C_{x+1}+C_{x+2}+\ldots$.
d. $\quad R_{x}=M_{x}+R_{x+1}$
vi. Present value of the assurance benefits to the insured in terms of the commutation functions are as follows:
a. Temporary Assurance Policy, $A_{x: n}^{1}=\frac{M_{x}-M_{x+n}}{D_{x}}$
b. Whole Life Assurance Policy, $\mathrm{A}_{\mathrm{x}}=\frac{1}{\mathrm{D}_{\mathrm{x}}}\left(\mathrm{M}_{\mathrm{x}}\right)$
c. Pure Endowment Assurance Policy, $A_{x: n}=\frac{1}{D_{x+n}} D_{x}$
d. Endowment Assurance Policy, $A_{x: n}=\frac{M_{x}-M_{x+n}+D_{x+n}}{D_{x}}$
e. Double Endowment Assurance Policy:

$$
\mathrm{DA}_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{x}+\mathrm{n}}+2 \mathrm{D}_{\mathrm{x}+\mathrm{n}}}{\mathrm{D}_{\mathrm{x}}}
$$

f. Increasing Temporary Assurance Policy:

$$
(\mathrm{IA})_{\mathrm{x}: \mathrm{n} \mid}^{1}=\frac{\mathrm{R}_{\mathrm{x}}-\mathrm{R}_{\mathrm{x}+\mathrm{n}}-\mathrm{nM}}{\mathrm{D}_{\mathrm{x}+\mathrm{n}}}
$$

g. Increasing Whole Life Assurance Policy, (IA) $)_{x}=\frac{R_{x}}{D_{x}}$
h. Special Endowment Assurance Policy that provides increasing death benefit and increasing survival benefits:

$$
(\mathrm{IA})_{\mathrm{x}: \mathrm{n} \mid}=\frac{\mathrm{R}_{\mathrm{x}}-\mathrm{R}_{\mathrm{x}+\mathrm{n}}-\mathrm{nM}_{\mathrm{x}+\mathrm{n}}+\mathrm{nD}_{\mathrm{x}+\mathrm{n}}}{\mathrm{D}_{\mathrm{x}}}
$$

i. Deferred Temporary Assurance Policy:

$$
\mathrm{t} \mid \mathrm{A}_{\mathrm{x}: \mathrm{n} \mid}^{1}=\mathrm{A}_{\mathrm{x}: \overline{\mathrm{t}+\mathrm{n} \mid}}^{1}-\mathrm{A}_{\mathrm{x}: \mathrm{t}}^{1}
$$

j. Deferred Whole Life Assurance Policy, $t \mid A_{x}=A_{x}-A_{x: \bar{t} \mid}^{1}$
vii. Present value of an immediate annuity for life of Re.1.00 to an annuitant of age x years is given by $a_{x}=\frac{N_{x+1}}{D_{x}}$
viii. Present value of an immediate annuity due for life of Re.1.00 to an annuitant of age x years is given by $\ddot{a}_{x}=1+a_{x}$

Where,
$\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{N}_{\mathrm{x}+1}}{\mathrm{D}_{\mathrm{x}}}$
ix. Present value of a deferred life annuity for Re.1.00 to an annuitant of age x years for a deferment period of t years is given by
$t \left\lvert\, a_{x}=\frac{N_{x+t+1}}{D_{x}}\right.$
x. Present value of a deferred life annuity for Re.1.00 due to an annuitant of age x years for a deferment period of t years is given by:

$$
t \left\lvert\, \ddot{a}_{x}=\frac{N_{x+t}}{D_{x}}\right.
$$

xi. Present value of a temporary immediate life annuity for life of Re.1.00 to an annuitant of age x years for a term of n years is given by
$a_{x: n}=\frac{N_{x+1}-N_{x+n+1}}{D_{x}}$
xii. Present value of a deferred temporary immediate life annuity for life of Re.1.00 to an annuitant of age x years for a term of n years to be started after a deferment period of t years is given by

$$
\mathrm{t} \mid \ddot{a}_{\mathrm{x}: n}=\mathrm{a}_{\mathrm{x}: \overline{\mathrm{n}+\mathrm{t}-1}}-\mathrm{a}_{\mathrm{x}: \mathrm{t-1}}
$$

xiii. Present value of an increasing life annuity in terms of commutation function S_{x} is given by:
(Iä) ${ }_{x}=\frac{S_{x}}{D_{x}}$
xiv. Present value of an increasing life annuity in terms of commutation functions is given by:
(Ia) $)_{x: n}=\frac{1}{D_{x}}\left[S_{x}-S_{x+n}-n N_{x+n}\right]$
xv. Present value of a life annuity with m number of payments in a year is given by:
$\mathrm{a}_{\mathrm{x}: \bar{n}]}^{(\mathrm{m})}=\mathrm{a}_{\mathrm{x}: \overline{\mathrm{n}}}+\frac{\mathrm{m}+1}{2 \mathrm{~m}}\left(1-\frac{\mathrm{D}_{\mathrm{x}+\mathrm{n}}}{\mathrm{D}_{\mathrm{x}}}\right)$

7. Premiums for Assurance and Annuity Plans

i. The amount of level annual premium to be paid by a person of age x at the beginning of each year to have a term assurance plan for n years:

$$
P_{x: n}^{1} \cdot n=\frac{M_{x}-M_{x+n}}{N_{x}-N_{x+n}}
$$

ii. The amount of level annual premium to be paid by a person of age x at the beginning of each year to have a pure endowment assurance plan for n years:

$$
\mathrm{P}_{\mathrm{x}: \mathrm{n}}^{1}=\frac{\mathrm{D}_{\mathrm{x}+\mathrm{n}}}{\mathrm{~N}_{\mathrm{x}}-\mathrm{N}_{\mathrm{x}+\mathrm{n}}}
$$

iii. The amount of level annual premium to be paid by a person of age x at the beginning of each year to have an endowment assurance plan for n years:

$$
\mathrm{P}_{\mathrm{x}: \mathrm{n}}=\frac{\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{x}+\mathrm{n}}+\mathrm{D}_{\mathrm{x}+\mathrm{n}}}{\mathrm{~N}_{\mathrm{x}}-\mathrm{N}_{\mathrm{x}+\mathrm{n}}}=\mathrm{P}_{\mathrm{x}: \mathrm{n}}^{1}+\mathrm{P}_{\mathrm{x}: n}^{1}
$$

iv. The amount of level annual premium to be paid by a person of age x at the beginning of each year to have a whole life assurance plan:
$\mathrm{P}_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{x}}}$
v. The amount of level annual premium to be paid by a person of age x at the beginning of each year to have a limited payment assurance plan for a limited period of t years:

$$
t^{P x}=\frac{M_{x}}{N_{x}-N_{x+t}}
$$

vi. If the payment of premiums is limited to a shorter period ' t ' where $\mathrm{t}<\mathrm{n}$ years in an endowment assurance plan then the level premium is denoted by $\mathrm{t}^{\mathrm{P}:=n}$
$t^{P_{x: n ~}^{n}}=\frac{M_{x}-M_{x+n}+D_{x+t}}{N_{x}-N_{x+t}}$
vii. The present value of a decreasing term assurance policy
$A=\frac{S\left(\mathrm{nM}_{\mathrm{x}}-\mathrm{R}_{\mathrm{x}+1}+\mathrm{R}_{\mathrm{x}+\mathrm{n}+1}\right)}{\mathrm{D}_{\mathrm{x}}}$
Where,
$\mathrm{S}_{\mathrm{n}} \quad=\quad$ The amount of sum assured in the first year
$\mathrm{S}=$ The amount by which the amount of sum assured decreases in every year
R_{x}, M_{x} and D_{x} are the different communication functions.
If ' P ' is the net annual premium limited for a fixed period ' t ' years
Where $\mathrm{t} \leq \frac{2 \mathrm{n}}{3}$, then $\mathrm{P}=\frac{\mathrm{S}\left(\mathrm{nM}_{\mathrm{x}}-\mathrm{R}_{\mathrm{x}+1}-\mathrm{R}_{\mathrm{x}+\mathrm{n}+1}\right)}{\mathrm{N}_{\mathrm{x}}-\mathrm{N}_{\mathrm{x}+\mathrm{t}}}$
Where,
$\mathrm{S} \quad=\quad$ The amount by which, the amount of sum assured is reduced every year
viii. Children's Deferred Assurances:
a. Annual premium for the Children's Deferred Whole Life Assurance plan is given by:

$$
\frac{v^{21-x} \times A_{21}}{a \ddot{a} \frac{v^{21-x}}{21-x} \times \ddot{a}_{21}}
$$

Where, x is the age of the child.
b. Annual premium for the Children's Deferred Endowment Assurance plan, maturing at an age m is given by:

$$
\frac{v^{21-x} A_{21: m-21}}{a_{\bar{m}}^{21-x}+v^{21-x} a_{21: \bar{m}-21}}
$$

c. Additional Annual premium payable during the deferment period to get the premium waiver benefit in the event of death of the father during the deferment period, corresponding to the basic annual premium of Rs.100, given by:

$$
=\frac{100(\ddot{a} \overline{21-x})}{\ddot{a} y: 21-x}
$$

Where,
$y=$ The age of the father on the date of commencement of the policy.
ix. Net single premium for an immediate annuity of Re. 1.00 per annum payable in arrear every year for n years certain and thereafter during the life time of the annuitant of age x at entry is given by:
$\mathrm{a}_{\mathrm{n} \mid}+\frac{D_{\mathrm{x}+\mathrm{n}}}{\mathrm{D}_{\mathrm{x}}} \mathrm{x}\left(\mathrm{a}_{\mathrm{x}+\mathrm{n}}\right)$
x. Net annual premium P payable for t years for the deferred annuity of Re. 1 per annum payable m times in a year for n years certain and thereafter during the lifetime of the annuitant of age x at entry with a deferment period of t-years is given by:
$P=\frac{a_{n}^{(m)}+\frac{D_{x+n+t}}{D_{x+t}}\left(a_{x+n+t}+\frac{m-1}{2 m}\right)}{\ddot{s}_{t}}$
xi. Calculation of premiums when frequency of payment is m times a year:
a. Let $\mathrm{P}_{\mathrm{x}}^{(\mathrm{m})}$ represents the net premium per annum payable for a whole life assurance at the end of the year of death of (x). A premium of $\frac{1}{m} P_{x}^{(m)}$ is payable at the commencement of each m th period of a year which (x) enters.
$\mathrm{P}_{\mathrm{x}}^{(\mathrm{m})} \ddot{\mathrm{a}}_{\mathrm{x}}^{(\mathrm{m})}=\frac{\mathrm{P}_{\mathrm{x}}}{1-\left(\frac{\mathrm{m}-1}{2 \mathrm{~m}}\right)\left(\mathrm{P}_{\mathrm{x}}+\mathrm{d}\right)}$
Where,
$\mathrm{P}_{\mathrm{x}}=$ The amount of annual premium
$\ddot{\mathrm{a}}_{\mathrm{x}}^{(\mathrm{m})}=\quad$ The present value of annuity due where the premiums are paid m times a year
$\mathrm{d}=$ Discount factor $=\frac{\mathrm{i}}{1+\mathrm{i}}$
i $\quad=\quad$ The rate of interest per annum
b. For an endowment assurance Re. 1 on (x) for a term of n years for which premiums are payable m times, we have,

$$
\mathrm{P}_{\mathrm{x}: \mathrm{n}}^{(\mathrm{m})}=\frac{\mathrm{P}_{\mathrm{x}: \mathrm{n}}}{1-\frac{\mathrm{m}-1}{2 \mathrm{~m}}\left\{\mathrm{P}_{\mathrm{x}: \mathrm{n}]}^{1}+\mathrm{d}\right\}}
$$

Where,
$\mathrm{P}_{\mathrm{x}: \mathrm{n}}=\quad=$ Level annual premium
c. For whole life limited payment policy we have,

Where,

$$
\mathrm{t}^{\mathrm{Px}}=\quad \text { Level annual premium }
$$

d. For limited payment endowment policy :

$$
\mathrm{P}_{\mathrm{x}: \mathrm{n} \mid}^{(\mathrm{m})}=\frac{\mathrm{t}^{\mathrm{Px}: n}}{1-\frac{\mathrm{m}-1}{2 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{x}: \mathrm{t}}^{1}+\mathrm{d}\right)}
$$

Where,

$$
\mathrm{t}^{\mathrm{P}} \mathrm{x:n}=\text { Level annual premium }
$$

xii. Premiums for additional risks:
a. The sum assured is subject to an initial debt of tD that reduces by D every year. The additional premium payable for an whole life assurance policy will be: $\quad P_{x}^{\prime}-P_{x}=\frac{D\left(\mathrm{tM}_{x}^{\prime}-R_{x+1}^{\prime}+R_{x+t+1}^{\prime}\right)}{N_{x}^{\prime}}$

Where, $\mathrm{M}_{\mathrm{x}}^{\prime}, \mathrm{R}^{\prime}$ and $\mathrm{N}_{\mathrm{x}}^{\prime}$ are the commutation functions for additional risks.
b. The sum assured is subject to an initial debt of tD that reduces by D every year. The additional premium payable for an endowment assurance policy will be:

$$
\mathrm{P}_{\mathrm{x}: \mathrm{n} \mid}^{\prime}-\mathrm{P}_{\mathrm{x}: \mathrm{n} \mid}=\frac{\mathrm{D}\left(\mathrm{tM}_{\mathrm{x}}^{\prime}-\mathrm{R}_{\mathrm{x}+1}^{\prime}+\mathrm{R}_{\mathrm{x}+\mathrm{t}+1}^{\prime}\right)}{\mathrm{N}_{\mathrm{x}}^{\prime}+\mathrm{N}_{\mathrm{x}+\mathrm{n}}^{\prime}}
$$

xiii. Calculation of Office premium:
a. Whole life assurance policy:

$$
\mathrm{P}^{1}=\frac{\mathrm{S}\left[\mathrm{P}_{\mathrm{x}}+\frac{\left(\mathrm{I}_{2}-\mathrm{K}_{2}\right)}{\ddot{\mathrm{a}}_{\mathrm{x}}}+\mathrm{K}_{2}\right]}{1-\frac{\left(\mathrm{I}_{1}-\mathrm{K}_{1}\right)}{\ddot{\mathrm{a}}_{\mathrm{x}}}-\mathrm{K}_{1}}
$$

Where,

P^{1}	$=$ Office premium
P_{x}	$=$ Level annual premium
$\ddot{\mathrm{a}}_{\mathrm{x}}$	$=$The Present value of an immediate annuity due for life of Re.1.00 to an annuitant of age x years
I_{1} and I_{2}	$=$Initial expenses which are expressed per unit of premium and per unit of sum assured respectively
K_{1} and K_{2}	$=$Renewel expenses equal to which are expressed per unit of premium and per unit of sum assumed respectively

b. Endowment Assurance Policy: $P^{1}=\frac{S\left[P_{x: n}+\frac{\left(I_{2}-K_{2}\right)}{\ddot{a}_{x: n}}+K_{2}\right]}{1-\frac{\left(\mathrm{I}_{1}-\mathrm{K}_{1}\right)}{\ddot{a}_{x: n}}-\mathrm{K}_{1}}$

8. Credibility Theory

i. When Normal approximation is applied to the Poisson distribution then, the probability (P) that observation X is within $\pm \mathrm{k}$ of the mean μ is given by: $\mathrm{P}=2 \Phi(\mathrm{k} \sqrt{\mathrm{n}})-1$
Where,
$\mathrm{n} \quad=\quad$ Number of claims
Φ stands for normal distribution
ii. The standard for full credibility for severity is given by
$\mathrm{N}=\mathrm{n}_{0} \mathrm{CV}_{\mathrm{s}}^{2}$
Where,
$\mathrm{n}_{0} \quad=\quad$ The full credibility standard for frequency
$\mathrm{CV}_{\mathrm{s}}^{2}=\quad$ The coefficient of variation for the claim size distribution
iii. Process variance for pure premium is given by:
$\operatorname{Var}(\mathrm{PP})=\mu_{\mathrm{f}} \sigma_{\mathrm{S}}^{2}+\mu_{\mathrm{S}}^{2} \sigma_{\mathrm{f}}^{2}$
Where,
$\mu_{\mathrm{f}} \quad=\quad$ Mean of the claim frequency distribution
$\mu_{\mathrm{s}} \quad=\quad$ Mean of the claim severity distribution
$\sigma_{f}^{2}=$ Variance of the claim frequency distribution
$\sigma_{\mathrm{S}}^{2} \quad=\quad$ Variance of the claim severity distribution
iv. The expected number required for full credibility of pure premium
$\mathrm{n}_{\mathrm{F}}=\mathrm{n}_{0}\left(1+\mathrm{CV}_{\mathrm{S}}^{2}\right)$
Where,
$\mathrm{n}_{0} \quad=\quad$ The ratio between the mean pure premium and the standard deviation of pure premiums
$\mathrm{CV}_{S}=$ The coefficient of severity
v. If the Poisson assumption does not hold good, general formula for the standard for full credibility is given by:
$n_{F}=\left\{y^{2} / k^{2}\right\}\left(\sigma_{f}^{2} / \mu_{f}+\sigma_{S}^{2} / \mu_{\mathrm{s}}^{2}\right)$
Where,
$\mathrm{k} \quad=\quad$ Allowance for the variance of the observed sampled frequency rate
y $\quad=\quad$ Standard normal variation
$\mu_{\mathrm{f}} \quad=\quad$ Mean of the claim frequency distribution
$\mu_{\mathrm{s}} \quad=\quad$ Mean of the claim severity distribution
$\sigma_{f}^{2}=$ Variance of the claim frequency distribution
$\sigma_{\mathrm{S}}^{2}=$ Variance of the claim severity distribution
vi. B Ü HLAMANN Credibility is given by
$Z=\frac{N}{N+k}$
Where,
N is the number of observations and k is the B ü hlamann credibility parameter.

9. Loss Distributions and Risk Models

i. Poisson Distribution:
a. $\quad P(N=r) \quad=\quad \frac{e^{-n} n^{r}}{r!} r=0,1,2, \ldots \ldots \ldots \ldots$.
b. Mean $=n$
c. Variance $=n$
ii. Lognormal Distribution:
a. The PDF is defined as:
$f(x)=\frac{1}{\sigma x \sqrt{2 \pi}} \times \exp \left[\frac{-1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right] x>0$
b. \quad Mean $=\exp \left(\mu+\frac{1}{2} \sigma^{2}\right)$
c. \quad Variance $=\exp \left(2 \mu+\sigma^{2}\right)\left[\exp \left(\sigma^{2}\right)-1\right]$
iii. Pareto Distribution:
a. The PDF is defined as: $f(x)$

$$
=\frac{\alpha}{\beta}\left(\frac{\beta}{\beta+x}\right)^{\alpha+1}, x>0
$$

b. Mean of a pareto distribution is given by,

$$
\mathrm{E}(\mathrm{X})=\frac{\beta}{\alpha-1}
$$

c. $\quad \operatorname{Var}(X)=\frac{\alpha \beta^{2}}{(\alpha-2)(\alpha-1)^{2}}$
iv. Gamma Distribution:
a. The PDF is defined as: $f(x)=\frac{\beta^{\alpha}}{\tau(\alpha)} e^{-\beta x}(x)^{\alpha-1} 0 \leq x<\infty$
b. \quad Mean $=\frac{\alpha}{\beta}$
c. \quad Variance $=\frac{\alpha}{\beta^{2}}$
v. Individual Risk Model:
a. Expected Aggregate Loss: $\mathrm{E}(\mathrm{S})$
$=\sum_{j=1}^{n} E\left(Y_{j}\right)=\sum_{j=1}^{n} q_{j} \mu_{j}$
Where,
$Y_{j}=$ The amount of claim from the n-th policy
$q_{j} \quad=\quad$ The probability of a claim from the j-th policy
$\mu_{\mathrm{j}} \quad=\quad$ The amount of benefit associated with the j -th policy
b. Variance of aggregate loss: Var (S)
$=\sum_{\mathrm{j}=1}^{\mathrm{n}} \operatorname{Var}\left(\mathrm{Y}_{\mathrm{j}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{q}_{\mathrm{j}}\left(1-\mathrm{q}_{\mathrm{j}}\right) \mu_{\mathrm{j}}^{2}$
Where,
$\mathrm{Y}_{\mathrm{j}} \quad=\quad$ The amount of claim from the n-th policy
$\mathrm{q}_{\mathrm{j}} \quad=\quad$ The probability of a claim from the j -th policy
$\mu_{\mathrm{j}} \quad=\quad$ The amount of benefit associated with the j -th policy
vi. Collective Risk Model:
a. Mean: $\mathrm{E}(\mathrm{S})=\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}\right] \mathrm{E}[\mathrm{n}]$
b. $\quad \operatorname{Variance} \operatorname{Var}(S)=E[n] \operatorname{Var}\left[Y_{i}\right]+E\left[Y_{i}\right] \operatorname{Var}[n]$

Where,
$\mathrm{Y}_{\mathrm{i}}=$ Amount of claim from the i-th policy
$\mathrm{n}=$ Number of policies.

10. Policy Values

i. For a Whole Life assurance policy, policy value is given by:
${ }_{\mathrm{t}} \mathrm{V}_{\mathrm{x}}=\mathrm{A}_{\mathrm{x}+\mathrm{t},}, \mathrm{P}_{\mathrm{x}}$
Where,
$A_{x+t}=\quad$ Present value of Assurance benefits
$\mathrm{P}_{\mathrm{x}} \quad=\quad$ Level annual premium
ii. The policy value under prospective method for an Endowment assurance policy is given by:
$\mathrm{t}_{\mathrm{x}: \mathrm{n}}^{\mathrm{v}} \boldsymbol{\square} \quad=\quad \mathrm{A}_{\mathrm{x}+\mathrm{t:n-t}}-\mathrm{P}_{\mathrm{x}: \mathrm{n}} \cdot \ddot{a}_{\mathrm{x}+\mathrm{t:n-t}}$
Where,
$A_{x+t: n-t}=\quad$ Present value of Assurance benefits an age of $x+t$ years
$P_{x: n} \quad=\quad$ Level Annual Premium
$\ddot{a}_{x+t: n-t} \quad=\quad$ Present value of an immediate annuity due for life of Re.1.00 to an annuitant of age $\mathrm{x}+\mathrm{t}$ years for a term of $\mathrm{n}-\mathrm{t}$ years.
iii. Under prospective method, the policy value for Temporary assurance policy is given by:
$t^{v_{x: n}^{1}}=A_{x+t: n-t}^{1}-P_{x+t: \overline{n-t}} \cdot \ddot{a}_{x+t: n-t}$
Where,
$A^{1} \underset{x+t: n-t}{ }=$ Present value of Assurance benefits an age of $x+t$ years
$P_{x+t: \overline{n-t}} \quad=$ Level Annual Premium
$\ddot{a}_{x+t: n-t}=$ Present value of an immediate annuity due for life for Re. 1.00 to an annuitant of age $x+t$ years for a term of $n-t$ years.

11. Surplus and it's Distribution

i. Loading profit that is profit due to lower expenses is expressed as:
$\left(\mathrm{P}^{\prime}-\mathrm{P}-\mathrm{E}\right) \mathrm{x}\left(1+\frac{\mathrm{i}}{2}\right)$
Where,
$\mathrm{P}^{\prime}=$ Total amount of office premium received
$\mathrm{P}=$ Total of premiums taken credit for in the last valuation
$\mathrm{E}=$ Actual expenses
i $=$ Valuation rate.

II. Economics

1. Supply and Demand Analysis

i. Price elasticity of demand
a. Point Elasticity
$e_{p}=\frac{\partial Q}{\partial P} \times \frac{P}{Q}$
Where,
$\partial \mathrm{Q}=$ Infinitisimal change in quantity demanded
$\partial \mathrm{P}=$ Infinitisimal change in price
$\mathrm{P}=$ Original price of the good
$\mathrm{Q}=$ Original quantity demanded of the good
b. Arc Elasticity
$\mathrm{e}_{\mathrm{p}}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}_{0}+\mathrm{P}_{1}}{\mathrm{Q}_{0}+\mathrm{Q}_{1}}$
Where,
$\Delta \mathrm{Q}=$ Change in quantity demanded
$\Delta \mathrm{P}=$ Change in price of the good
$\mathrm{P}_{0}=$ Original price of the good
$\mathrm{P}_{1}=$ New price of the good
$\mathrm{Q}_{0} \quad=\quad$ Original quantity demanded of the good
$\mathrm{Q}_{1}=$ New quantity demanded of the good
ii. Marginal Revenue
$M R=A R\left\{1-\frac{1}{\left|e_{p}\right|}\right\}$
Where,
$\mathrm{AR}=$ Average revenue
$\mathrm{e}_{\mathrm{p}}=\quad$ Price elasticity of demand
iii. Income elasticity of demand
$e_{y}=\frac{\partial Q}{\partial Y} \times \frac{Y}{Q}$
Where,
$\partial \mathrm{Q}=\quad$ Change in quantity demanded
$\partial \mathrm{Y}=$ Change in income of the consumer
$\mathrm{Y}=$ Income of the consumer
$\mathrm{Q} \quad=\quad$ Quantity demanded of the good
iv. Cross price elasticity of demand
$\mathrm{e}_{\text {cij }}=\frac{\partial \mathrm{Q}_{i}}{\partial P_{j}} \times \frac{P_{j}}{Q_{i}}$
Where,
$\partial \mathrm{Q}_{\mathrm{i}}=$ Change in quantity demanded of the good i
$\partial \mathrm{P}_{\mathrm{j}}=$ Change in price of the good j
$P_{j} \quad=\quad$ Price of the good j
$\mathrm{Q}_{\mathrm{i}}=$ Quantity demanded of the good i
v. Promotional elasticity of demand
$\mathrm{e}_{\mathrm{A}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{A}} \times \frac{\mathrm{A}}{\mathrm{Q}}$
Where,
$\partial \mathrm{Q} \quad=\quad$ Change in quantity demanded
$\partial \mathrm{A}=$ Change in units of advertisement expenditure on the good
A $=$ Units of advertisement expenditure on the good
$\mathrm{Q}=$ Quantity demanded of the good
vi. Price-elasticity of supply
$e_{s}=\frac{\partial Q_{s}}{\partial P} \times \frac{P}{Q_{s}}$
Where,
$\mathrm{P} \quad=\quad$ Price of the good
$\mathrm{Q}_{\mathrm{s}} \quad=\quad$ Quantity supplied of the good
$\partial \mathrm{Q}_{\mathrm{s}}=$ Change in quantity supplied on the good
$\partial \mathrm{P}=$ Change in price of the good.

2. Consumer Behavior and Analysis

i. Marginal Rate of Substitution of good X for good Y
$\mathrm{MRS}_{\mathrm{X}, \mathrm{Y}}=\frac{\mathrm{MU}_{\mathrm{X}}}{M U_{Y}}$
Where,

MU_{X}	$=$	Marginal Utility of good X
MU_{Y}	$=$	Marginal Utility of good Y

ii. Consumer equilibrium
$\frac{\mathrm{MU}_{\mathrm{X}}}{\mathrm{P}_{\mathrm{X}}}=\frac{\mathrm{MU}_{\mathrm{Y}}}{\mathrm{P}_{\mathrm{Y}}}$
Where,
$\mathrm{MU}_{\mathrm{X}} \quad=\quad$ Marginal Utility of good X
$\mathrm{MU}_{\mathrm{Y}} \quad=\quad$ Marginal Utility of $\operatorname{good} \mathrm{Y}$
$\mathrm{P}_{\mathrm{X}} \quad=\quad$ Price of good X
$\mathrm{P}_{\mathrm{Y}} \quad=\quad$ Price of good Y
iii. Budget constraint
$\mathrm{I}=\mathrm{P}_{\mathrm{X}} \mathrm{X}+\mathrm{P}_{\mathrm{Y}} \mathrm{Y}$
Where,

I	$=$ Income of the consumer
X	$=$ Number of units of good X
Y	$=$ Number of units of good Y
P_{X}	$=$ Price of good X
P_{Y}	$=$ Price of good Y.

3. Production Analysis

i. Average product of labor
$A P_{L}=\frac{T P_{L}}{L}$
Where,
$\mathrm{TP}_{\mathrm{L}}=$ Total product of labor
$\mathrm{L} \quad=\quad$ Number of labor units
ii. Marginal product of labor
$\mathrm{MP}_{\mathrm{L}}=\frac{\Delta \mathrm{TP}_{\mathrm{L}}}{\Delta \mathrm{L}}$
Where,
$\Delta \mathrm{TP}_{\mathrm{L}} \quad=\quad$ Change in total product of labor
$\Delta \mathrm{L} \quad=\quad$ Change in the number of labor units
iii. Marginal rate of technical substitution between Labor (L) and Capital (K)
$\operatorname{MRTS}_{\mathrm{L}, \mathrm{K}}=\frac{\mathrm{MP}_{\mathrm{L}}}{\mathrm{MP}_{\mathrm{K}}}$
Where,
$\mathrm{MP}_{\mathrm{L}} \quad=\quad$ Marginal product of labor
$\mathrm{MP}_{\mathrm{K}} \quad=\quad$ Marginal product of capital
iv. Cost constraint of a firm
$\mathrm{C}_{0}=\mathrm{wL}+\mathrm{rK}$
Where,
$\mathrm{C}_{0}=$ A given amount of money that the firm spends
$\mathrm{L} \quad=\quad$ Number of labor units
$\mathrm{K}=\quad$ Number of capital units
$\mathrm{w}=$ Wage rate
r $=$ Interest rate
v. Efficient input combination

$$
\frac{\mathrm{MP}_{\mathrm{L}}}{\mathrm{MP}_{\mathrm{K}}}=\frac{\mathrm{w}}{\mathrm{r}}
$$

Where,
$\mathrm{MP}_{\mathrm{L}} \quad=\quad$ Marginal product of labor
$\mathrm{MP}_{\mathrm{K}} \quad=\quad$ Marginal product of capital
$\mathrm{w} \quad=\quad$ Wage rate
$\mathrm{r}=\quad$ Interest rate.
4. Analysis of Costs
i. TC $=$ TFC + TVC

Where,
TC $\quad=\quad$ Total cost
TFC $=$ Total fixed cost
TVC $\quad=\quad$ Total variable cost
ii. $\quad \mathrm{AFC}=\frac{\mathrm{TFC}}{\mathrm{Q}}$

Where,
TFC $\quad=\quad$ Total fixed cost
Q $\quad=\quad$ Number of units produced
iii. $\mathrm{MC}=\frac{\partial \mathrm{TC}}{\partial \mathrm{Q}}$

Where,

$\partial \mathrm{TC}$	$=$	Change in total cost
$\partial \mathrm{Q}$	$=\quad$ Change in quantity produced	

iv. Break-even output $(\mathrm{Q})=\frac{\mathrm{FC}}{\mathrm{P}-\mathrm{AVC}}$

Where,
$\mathrm{P} \quad=\quad$ Price
FC $\quad=\quad$ Fixed cost
AVC $=\quad$ Average variable cost.
5. Market Structure: Perfect Competition
i. Profit of a firm $(\pi)=\mathrm{TR}-\mathrm{TC}$

Where,
$\mathrm{TR}=$ Total revenue
$\mathrm{TC}=$ Total cost
ii. Tax burden on the buyer $=\frac{e_{s}}{e_{d}+e_{s}} \times$ Tax

Where,
$e_{s} \quad=\quad$ Price elasticity of supply
$e_{d}=$ Price elasticity of demand
iii. Profit maximization
a. First order condition
$\mathrm{MC}=\mathrm{MR}=\mathrm{AR}=\mathrm{P}$
b. Second order condition
$\frac{\partial^{2} T R}{\partial Q^{2}}<\frac{\partial^{2} T C}{\partial Q^{2}}$
Where,

TR	$=$ Total revenue
TC	$=$ Total cost
MR	$=$ Marginal revenue
MC	$=$ Marginal cost
AR	$=$ Average revenue
P	$=$ Price
Q	$=$ Quantity.

6. Market Structure: Monopoly

i. Profit maximization

Marginal Revenue (MR) = Marginal Cost (MC)
ii. Lerner Index of monopoly power
a. $\mathrm{L}=\frac{\mathrm{P}-\mathrm{MC}}{\mathrm{P}}$
b. $\quad \frac{\mathrm{P}-\mathrm{MC}}{\mathrm{P}}=\frac{1}{\left|\mathrm{e}_{\mathrm{p}}\right|}$

Where,
$\mathrm{P}=\quad$ Price
$\mathrm{MC}=$ Marginal Cost
$\mathrm{e}_{\mathrm{p}}=\quad$ Elasticity of demand
iii. The Herfindahl's Index (H)
$\mathrm{H}=\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}+\mathrm{S}_{3}^{2}+\ldots \mathrm{S}_{\mathrm{n}}^{2}$
Where,
$\mathrm{S}_{1} \quad=\quad \%$ share of the largest firm in the market
$\mathrm{S}_{2} \quad=\quad \%$ share of the second largest firm in the market
$\mathrm{S}_{\mathrm{n}} \quad=\quad \%$ share of the nth firm in the market.
7. Market Structure: Oligopoly
i. Output determination
$\mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{P}}\left[\frac{\mathrm{n}}{\mathrm{n}+1}\right]$
Where,
$\mathrm{Q}_{\mathrm{p}} \quad=\quad$ Output if the market would be a competitive one
$\mathrm{n} \quad=\quad$ Number of firms in Oligopoly.
8. Measurement of Macro Economic Aggregates
i. Gross $=$ Net + Depreciation
ii. \quad Market Price $=$ Factor Cost + [Indirect Tax - Subsidy $]$
iii. National $=$ Domestic + Net Factor Income from Abroad
iv. The Laspeyre Price Index
$\mathrm{I}_{\mathrm{t}}=\frac{\sum_{i=1}^{n} \mathrm{P}_{\mathrm{i}}^{\mathrm{t}} \mathrm{q}_{\mathrm{i}}^{0}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}}^{0} \mathrm{q}_{\mathrm{i}}^{0}} \times 100$
Where,
$q_{i}^{0} \quad=\quad$ Quantity of ith good purchased in the base year
$\mathrm{p}_{\mathrm{i}}^{0} \quad=\quad$ Price of the ith good in the base year
$q_{i}^{t}=$ Quantity of ith good purchased in the current year
$p_{i}^{t}=$ Price of the ith good in the current year
v. GNP Deflator $=\frac{\text { NominalGNP }}{\text { RealGNP }}$.

9. The Simple Keynesian Model of Income Determination

i. $\quad \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{E}-\mathrm{M}$

Where,
$\mathrm{Y}=$ Equilibrium income
C $=$ Consumption expenditure
I $=$ Investment expenditure
G $=$ Government expenditure
E $=$ Exports
$\mathrm{M}=$ Imports
ii. Average Propensity to Consume (APC) $=\frac{\mathrm{C}}{\mathrm{Y}}$

Where,
C $=$ Consumption expenditure
$\mathrm{Y}=$ Income
iii. Marginal Propensity to Consume (MPC) $=\frac{\Delta \mathrm{C}}{\Delta \mathrm{Y}}$

Where,
$\Delta \mathrm{C}=$ Change in consumption expenditure
$\Delta \mathrm{Y}=$ Change in income
iv. Average Propensity to Save (APS) $=\frac{\mathrm{S}}{\mathrm{Y}}$

Where,
$\mathrm{S}=$ Savings
$\mathrm{Y}=$ Income
v. Marginal Propensity to Save (MPS) $=\frac{\Delta S}{\Delta Y}$

Where,
$\Delta \mathrm{S}=\quad$ Change in savings
$\Delta \mathrm{Y}=$ Change in income
vi. \quad Multiplier $(m)=\frac{1}{[1-\beta(1-t)-\pi+\mu]}$

Where,
$\beta=$ Marginal propensity to consume
$\mathrm{t}=$ Tax coefficient
$\pi=$ Induced investment coefficient
$\mu=$ Marginal propensity to import.
10. Income Determination Model including Money and Interest
i. Goods market equilibrium

$$
\mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{X}-\mathrm{M}
$$

Where,
C $=$ Consumption expenditure
$\mathrm{Y}=$ Income

$$
\begin{array}{ll}
\mathrm{I} & =\text { Investment expenditure } \\
\mathrm{G} & =\text { Government expenditure } \\
\mathrm{E} & =\text { Exports } \\
\mathrm{M} & = \\
\text { Imports }
\end{array}
$$

ii. Money market equilibrium
$\mathrm{M}_{\mathrm{s}}=\mathrm{M}_{\mathrm{d}}$
Where,
$\mathrm{M}_{\mathrm{s}} \quad=\quad$ Supply of money
$\mathrm{M}_{\mathrm{d}}=$ Demand for money.

11. Money Supply and Banking System

i. \quad High powered money $(\mathrm{H})=$ Monetary liabilities of the Central bank + Government money
ii. \quad Multiplier $(M)=\frac{1+C_{u}}{C_{u}+r}$

Where,
$\mathrm{C}_{\mathrm{u}}=$ Currency deposit ratio
$\mathrm{r}=$ Cash reserve ratio
iii. Money supply $\left(\mathrm{M}_{\mathrm{s}}\right)=\mathrm{H} \times \mathrm{m}$

Where,
$\mathrm{H}=$ High powered money
$\mathrm{m}=$ Money multiplier
iv. \quad Finance Ratio $=\frac{\text { Total Issues }}{\text { National Income }}$
v. Financial Interrelation Ratio $($ FIR $)=\frac{\text { Total Issues }}{\text { Net Capital Formation }}$
vi. \quad New Issue Ratio $($ NIR $)=\frac{\text { Primary Issues }}{\text { Net Capital Formation }}$
vii. Intermediation Ratio (IR) $=\frac{\text { Secondary Issues }}{\text { Primary Issues }}$
viii. Velocity of money $(\mathrm{v})=\frac{\mathrm{Y}}{\mathrm{M}_{\mathrm{s}}}$

Where,
$\mathrm{Y}=$ Income
$\mathrm{M}_{\mathrm{s}}=\quad$ Money supply.

12. The Open Economy and Balance of Payments

i. Trade balance $=$ Exports - Imports
ii. Current account balance
$=$ Credit (Current account) - Debit (Current account)
iii. Capital account balance
$=\quad$ Credit $($ Capital account $)-$ Debit (Capital account).
13. Modern Macro Economics: Fiscal Policy, Budget Deficits and Government Debt
i. Fiscal Deficit $=$ Borrowings and other liabilities
ii. Primary Deficit $=$ Fiscal deficit - Interest payments
iii. Revenue Deficit $=$ Revenue expenditure - Revenue receipts.

III. Financial Management

1. Time Value of Money

i. Future Value of a Lump Sum (Single Flow)
$\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}(1+\mathrm{k})^{\mathrm{n}}$
Where,
$\mathrm{FV}_{\mathrm{n}}=\quad$ Future value of the initial flow n years hence
PV $=$ Initial cash flow
$\mathrm{k} \quad=\quad$ Annual rate of interest
$\mathrm{n} \quad=\quad$ Life of investment
ii. Effective rate of interest
$\mathrm{r}=\left(1+\frac{\mathrm{k}}{\mathrm{m}}\right)^{\mathrm{m}}-1$
Where,
r $\quad=\quad$ Effective rate of interest
$\mathrm{k}=$ Nominal rate of interest
$\mathrm{m}=$ Frequency of compounding per year
iii. Future Value Interest Factor of Annuity
$\operatorname{FVIFA}(\mathrm{k}, \mathrm{n})=\frac{(1+\mathrm{k})^{\mathrm{n}}-1}{\mathrm{k}}$
Where,
$\mathrm{k} \quad=\quad$ Rate of interest
$\mathrm{n}=$ Time horizon
iv. \quad Sinking Fund Factor $=\frac{1}{\operatorname{FVIFA}(k, n)}$

Where,
$\operatorname{FVIFA}(\mathrm{k}, \mathrm{n})=\quad$ Future value interest factor for annuity at $\mathrm{k} \%$ for n years

Present Value Interest Factor of Annuity
$\operatorname{PVIFA}(k, n)=\frac{(1+k)^{n}-1}{k(1+k)^{n}}$
Where,
$\mathrm{k} \quad=\quad$ Rate of interest
$\mathrm{n}=\mathrm{Time}$ horizon
vi. \quad Capital Recovery Factor $=\frac{1}{\operatorname{PVIFA}(k, n)}$

Where,
$\mathrm{k}=$ Rate of interest
$\mathrm{n}=$ Time horizon
vii. Present Value Interest Factor of a Perpetuity
$\mathrm{P}_{\infty}=1 / \mathrm{k}$
Where,
$\mathrm{k} \quad=\quad$ Rate of interest.

2. Risk and Return

i. Rate of return
$k=\frac{D_{t}+\left(P_{t}-P_{t-1}\right)}{P_{t-1}}$
Where,
$\mathrm{k} \quad=\quad$ Rate of return
$P_{t} \quad=\quad$ Price of security at time ' t ', i.e., at the end of the holding period
$P_{t-1}=\quad$ Price of the security at time ' $t-1$ ' i.e., at the beginning of the holding period or purchase price
$D_{t}=$ Income or cash flows receivable from the security at time ' t '
ii. Expected rate of return $(\overline{\mathrm{k}})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}$

Where,
$\mathrm{k}_{\mathrm{i}} \quad=\quad$ Rate of return from the ith outcome
$p_{i}=$ Probability of the ith outcome
$\mathrm{n} \quad=\quad$ Number of possible outcomes
i $=$ Outcome i
iii. Variance of an asset's rate of return, $\operatorname{VAR}(\mathrm{k})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i}}-\overline{\mathrm{k}}\right)^{2}$

Where,
$\operatorname{VAR}(k)=\quad$ Variance of returns
$\mathrm{p}_{\mathrm{i}} \quad=\quad$ Probability associated with ith possible outcome
$\mathrm{k}_{\mathrm{i}} \quad=$ Rate of return from the i ith possible outcome
$\overline{\mathrm{k}} \quad=$ Expected rate of return
$\mathrm{n} \quad=\quad$ Number of years
i $\quad=\quad$ Outcome i
iv. Standard deviation, $\sigma=\sqrt{\operatorname{VAR}(\mathrm{k})}$
v. CAPM model:
$\mathrm{k}_{\mathrm{j}}=\mathrm{r}_{\mathrm{f}}+\beta_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{m}}-\mathrm{r}_{\mathrm{f}}\right)$
Where,
$\mathrm{k}_{\mathrm{j}} \quad=\quad$ Expected or required rate of return on security ${ }^{\prime} \mathrm{j}$ '
$\mathrm{r}_{\mathrm{f}} \quad=$ Risk-free rate of return
$\beta_{j}=$ Beta coefficient of security ' j '
$\mathrm{k}_{\mathrm{m}}=$ Return on market portfolio
vi. Beta of security i, $\beta_{i}=\frac{\operatorname{Cov}_{i m}}{\sigma_{m}^{2}}$

Where,
$\operatorname{Cov}_{\mathrm{im}}=$ Covariance of security i with true market
$\sigma_{\mathrm{m}}^{2}=$ Variance of returns on the market index
vii. Alpha of security $i(\alpha)=E\left(r_{i}\right)-R\left(r_{i}\right)$

$$
=E\left(r_{i}\right)-\left[r_{f}+\beta_{i m}\left(E\left(r_{m}\right)-r_{f}\right)\right]
$$

Where,

α	$=$ The difference between expected return and required return
r_{f}	$=$ Risk-free rate
β_{im}	$=$ Beta coefficient of security i
$\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)$	$=$ Expected return of security i
$\mathrm{R}\left(\mathrm{r}_{\mathrm{i}}\right)$	$=$ Required return from security i
$\mathrm{E}\left(\mathrm{r}_{\mathrm{m}}\right)$	$=$ Return on market portfolio

viii. Systematic risk of security, $\mathrm{i}=\beta_{\mathrm{im}}^{2} \sigma_{\mathrm{m}}^{2}$

$$
\begin{aligned}
& =\frac{\rho_{\mathrm{im}}^{2} \sigma_{\mathrm{i}}^{2} \sigma_{\mathrm{m}}^{2}}{\sigma_{\mathrm{m}}^{2}} \\
& =\quad \rho_{\mathrm{im}}^{2} \sigma_{\mathrm{i}}^{2} \\
& =\quad \mathrm{R}_{\mathrm{im}}^{2} \sigma_{\mathrm{i}}^{2}
\end{aligned}
$$

since $\left[R_{i m}^{2}=\rho_{i m}^{2}\right]$
Where,
$\beta_{\mathrm{im}}=\quad$ Beta coefficient of security i
$\sigma_{\mathrm{m}}^{2}=$ Market variance
$\sigma_{\mathrm{i}}^{2}=\quad$ Variance of security i
$\rho_{\mathrm{im}}^{2}=$ The correlation coefficient, and
$\mathrm{R}_{\mathrm{im}}^{2}=\quad$ The coefficient of determination between the security i and the market portfolio
ix. Unsystematic Risk, $\left(\sigma_{\mathrm{ei}}^{2}\right)=\sigma_{\mathrm{i}}^{2}-\beta_{\mathrm{im}}^{2} \sigma_{\mathrm{m}}^{2}$

Or

$$
\begin{array}{ll}
= & \sigma_{i}^{2}-\rho_{i m}^{2} \sigma_{i}^{2} \\
= & \sigma_{i}^{2}\left(1-\rho_{i m}^{2}\right) \\
= & \sigma_{i}^{2}\left(1-R_{i m}^{2}\right)
\end{array}
$$

Where,
$\sigma_{i}^{2}=$ Variance of Security i
$\beta_{\mathrm{im}}=$ Beta coefficient of security i
$\sigma_{\mathrm{m}}^{2}=$ Market variance
$\rho_{\mathrm{im}}^{2}=$ The correlation coefficient, and
$\mathrm{R}_{\mathrm{im}}^{2}=$ The coefficient of determination between the security i and the market portfolio.

3. Valuation of Securities

i. Equity Valuation:

a. The intrinsic value or present value of equity share

$$
\left(\mathrm{P}_{0}\right)=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{D}_{\mathrm{t}}}{\left(1+\mathrm{k}_{\mathrm{e}}\right)^{\mathrm{t}}}+\frac{\mathrm{P}_{\mathrm{n}}}{\left(1+\mathrm{k}_{\mathrm{e}}\right)^{\mathrm{n}}}
$$

Where,
$\mathrm{P}_{0}=$ Current market price of the equity share or intrinsic value of the share
$\mathrm{D}_{\mathrm{t}}=$ Expected equity dividend at time t
$\mathrm{P}_{\mathrm{n}} \quad=\quad$ Expected price of the equity share at time n
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ Expected rate of return or required rate of return
n $=$ Investment period
$\mathrm{t}=$ Time t
b. The value of equity share when there is constant growth
$P_{0}=\frac{D_{0}(1+g)}{k_{e}-g}$
Where,
$\mathrm{D}_{0} \quad=\quad$ Current dividend per share
g $=$ Expected constant growth rate in dividends
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ Expected rate of return or required rate of return
ii. Bond Valuation:
a. The intrinsic value or the present value of a bond
V_{0} or $\mathrm{P}_{0}=\mathrm{I}\left(\mathrm{PVIFA}_{\mathrm{kd}, \mathrm{n}}\right)+\mathrm{F}\left(\mathrm{PVIF}_{\mathrm{kd}, \mathrm{n}}\right)$
Where,
$V_{0}=$ Intrinsic value of the bond
$\mathrm{P}_{0}=$ Present value of the bond
I $=$ Annual interest payable on the bond
$\mathrm{F} \quad=\quad$ Principal amount (par value) repayable at the maturity time
$\mathrm{n}=\quad$ Maturity period of the bond
$\mathrm{k}_{\mathrm{d}}=$ Cost of Capital or Required rate of return
b. \quad Current yield $=\frac{\text { Coupon Interest }}{\text { Prevailing Market Price }}$
c. Yield to maturity \mathbf{r} in the equation
$\mathrm{P}_{0}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{I}}{(1+\mathrm{r})^{\mathrm{t}}}+\frac{\mathrm{F}}{(1+\mathrm{r})^{\mathrm{n}}}$
Where,
$\mathrm{n} \quad=\quad$ Maturity period of the bond
I $=$ Annual interest payable on the bond
$\mathrm{F} \quad=\quad$ Principal amount (par value) repayable at the maturity time
iii. Valuation of a Convertible:

The value of convertible $=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{C}}{(1+\mathrm{r})^{\mathrm{t}}}+\frac{\left(\mathrm{P}_{\mathrm{n}}\right) \times \text { Conversion ratio }}{(1+\mathrm{r})^{\mathrm{n}}}$
Where,
$\mathrm{C}=$ Coupon amount
r $\quad=\quad$ Required rate of return
$P_{n}=\quad$ Expected price of equity share on conversion
$\mathrm{n}=$ Number of years to maturity.

4. Financial Statement Analysis

i. Liquidity Ratios:
a. Current Ratio = Current Assets/Current Liabilities
b. \quad Quick Ratio $=\frac{\text { Current Assets }- \text { Inventories }}{\text { Current Liabilities }}$
c. Bank finance to working capital ratio $=\frac{\text { Short-term bank borrowings }}{\text { Working capital gap }}$
ii. Leverage Ratios:
a. Long-term Debt-Equity Ratio $=\frac{\text { Long-term debt }}{\text { Net worth }}$
b. Total Debt-Equity Ratio $=\frac{\text { Total debt }}{\text { Net worth }}$
c. Debt-Asset Ratio $=\frac{\text { Total debt }}{\text { Total assets }}$
iii. Coverage Ratios:
a. Interest coverage ratio $=\frac{\text { EBIT }}{\text { Interest }}$

Where,
EBIT $=\quad$ Earning before interest and tax
b. Cash flow coverage ratio $=\frac{\text { EBILT }+D}{I+L+\frac{L R}{(1-t)}+\frac{P}{(1-t)}}$

Where,
EBILT $=$ Earnings before interest, lease payments and taxes
D $\quad=\quad$ Depreciation
I $=$ Interest charges
L $\quad=\quad$ Lease payments
t $=$ Marginal Tax Rate
LR $=$ Loan Repayment
$\mathrm{P} \quad=\quad$ Preference dividend
c. Debt Service Coverage Ratio
$=\binom{$ PAT + Depreciation + Other non - cash charges }{+ Interest on term loan }
Where,

PAT	$=$	Profit after tax
t	$=\quad$ Marginal tax rate	

iv. Turnover Ratios:
a. Inventory turnover $=\frac{\text { Cost of goods sold }}{\text { Average inventory }}$
b. Accounts receivables turnover
$=\quad \frac{\text { Net credit sales }}{\text { Average accounts receivable }}$
c. Total assets turnover $=\frac{\text { Net sales }}{\text { Average total assets }}$
v. Profitability Ratios:
a. Gross profit margin $=\frac{\text { Gross profit }}{\text { Net sales }}$
b. Net profit margin $=\frac{\text { Profit after tax }}{\text { Net sales }}$
c. Return on investment (Earning Power) $=\frac{\text { EBIT }}{\text { Average total assets }}$

Where,
EBIT $=$ Earning before interest and tax
d. Return on Net Worth $=\frac{\text { Profit after tax }}{\text { Average net worth }}$

5. Financial Forecasting

i. External financing requirement
$E F R=\frac{A}{S}(\Delta S)-\frac{L}{S}(\Delta S)-\mathrm{mS}_{1}(1-\mathrm{d})$
Where,

EFR	$=$ External financing requirement
A / S	$=$ Current assets and fixed assets as a proportion of sales
$\Delta \mathrm{S}$	$=$ Expected increase in sales
L / S	$=$ Spontaneous liabilities as a proportion of sales
m	$=$ Net profit margin
S_{1}	$=$ Projected sales for next year
d	$=$ Dividend pay-out ratio

ii. Sustainable growth rate $(g)=\frac{m(1-d) A / E}{A / S_{0}-m(1-d) A / E}$

Where,
$\mathrm{m}=$ Net profit margin
d $=$ Dividend pay-out ratio
g $\quad=\quad$ Sustainable growth rate with internal equity
$\mathrm{A} / \mathrm{E}=\frac{\text { Total Assets }}{\text { Equity }}=$ Current and fixed assets as proportion of equity
$\mathrm{A} / \mathrm{S}_{0}=$ Current and fixed assets as proportion of sales at time 0 .

6. Leverages

i. Degree of Operating Leverage $(\mathrm{DOL})=[\mathrm{Q}(\mathrm{S}-\mathrm{V})] /[\mathrm{Q}(\mathrm{S}-\mathrm{V})-\mathrm{F}]$

Where,
$\mathrm{Q} \quad=\quad$ Quantity sold
$\mathrm{S}=$ Selling price per unit
$\mathrm{V}=$ Variable cost per unit
$\mathrm{F}=$ Total fixed deposit
ii. Degree of Financial Leverage $(D F L)=\frac{\text { EBIT }}{\text { EBIT }-I-\frac{D_{p}}{(1-T)}}$

Where,
I $=$ Interest amount
$\mathrm{D}_{\mathrm{p}} \quad=\quad$ Preference dividend
$\mathrm{T}=$ Tax rate
EBIT $=\quad$ Earnings Before Interest and Tax
iii. Degree of Total Leverage (DTL) $=$ DOL \times DFL

$$
=\frac{\mathrm{Q}(\mathrm{~S}-\mathrm{V})}{\mathrm{Q}(\mathrm{~S}-\mathrm{V})-\mathrm{F}-\mathrm{I}-\frac{D_{\mathrm{p}}}{(1-T)}}
$$

Where,

$$
\begin{array}{ll}
\mathrm{DOL} & =\text { Degree of operating leverage } \\
\mathrm{DFL} & =\text { Degree of financial leverage } \\
\mathrm{Q} & =\text { Quantity sold } \\
\mathrm{S} & =\text { Selling price per unit } \\
\mathrm{V} & =\text { Variable cost per unit } \\
\mathrm{F} & =\text { Total fixed deposit } \\
\mathrm{I} & =\text { Interest amount } \\
\mathrm{D}_{\mathrm{p}} & =\text { Preference dividend } \\
\mathrm{T} & =\text { Tax rate }
\end{array}
$$

iv. Overall break-even point $(Q)=\frac{F+I+\frac{D_{p}}{(1-T)}}{(S-V)}$

Where,
$\mathrm{S} \quad=\quad$ Selling price per unit
$\mathrm{V}=$ Variable cost per unit
$\mathrm{F}=$ Total fixed deposit
I = Interest amount
$\mathrm{D}_{\mathrm{p}}=\quad$ Preference dividend
$\mathrm{T}=$ Tax rate
v. Operating break-even point $(\mathrm{Q})=\frac{\mathrm{F}}{(\mathrm{S}-\mathrm{V})}$

Where,
S $\quad=\quad$ Selling price per unit
$\mathrm{V}=$ Variable cost per unit
$\mathrm{F}=$ Total fixed deposit
vi. Financial break-even point $($ EBIT $)=\quad I+\frac{D_{P}}{(1-T)}$

Where,
I = Interest amount
$\mathrm{D}_{\mathrm{p}} \quad=\quad$ Preference dividend
$\mathrm{T}=$ Tax rate.
7. Cost of Capital
i. \quad Cost of Term Loans $=\mathrm{I}(1-\mathrm{T})$ Where,
I
$=$
Interest rate
$\mathrm{T}=$
Tax rate
ii. Cost of Debentures, $P=\sum_{t=1}^{n} \frac{I(1-t)}{\left(1+k_{d}\right)^{t}}+\frac{F}{\left(1+k_{d}\right)^{n}}$

Where,
$\mathrm{k}_{\mathrm{d}} \quad=\quad$ Post-tax cost of debenture capital
I = Annual interest payment per debenture capital
$\mathrm{t}=$ Corporate tax rate
$\mathrm{F}=$ Redemption price per debenture
$\mathrm{P} \quad=\quad$ Net amount realized per debenture
$\mathrm{n}=$ Maturity period
iii. Cost of Preference Capital, $P=\sum_{t=1}^{n} \frac{D}{\left(1+k_{p}\right)^{t}}+\frac{F}{\left(1+k_{p}\right)^{n}}$

Where,
$\mathrm{k}_{\mathrm{p}} \quad=\quad$ Cost of preference capital
D $\quad=\quad$ Preference dividend per share payable annually
$\mathrm{F}=$ Redemption price
$\mathrm{P} \quad=\quad$ Net amount realized per share
$\mathrm{n}=$ Maturity period
iv. Cost of Equity Capital
a. Dividend forecast approach, $P_{e}=\frac{D_{1}}{k_{e}-g}$

Where,
$\mathrm{P}_{\mathrm{e}} \quad=\quad$ Price per equity share
$\mathrm{D}_{1}=$ Expected dividend per share at the end of one year
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ Rate of return required by the equity shareholders
$\mathrm{g} \quad=\quad$ Growth rate of dividends
b. Cost of External Equity, $\quad \mathrm{k}_{\mathrm{e}}^{\prime}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{\mathrm{o}}(1-\mathrm{f})}+\mathrm{g}$ (Method 1)

$$
\mathrm{k}_{\mathrm{e}}^{\prime}=\frac{\mathrm{k}_{\mathrm{e}}}{(1-\mathrm{f})}(\text { Method } 2)
$$

Where,
$\mathrm{k}_{\mathrm{e}}^{\prime}=$ Cost of external equity
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ Cost of equity
$D_{1}=$ Dividend expected at the end of year 1
$\mathrm{P}_{\mathrm{o}}=$ Current market price per share
g $=$ Constant growth rate applicable to dividends
$\mathrm{f}=$ Floatation costs as a percentage of the current market price
v. Weighted Average Cost of Capital

$$
=\quad k_{e}\left(\frac{E}{E+P+D}\right)+k_{p}\left(\frac{P}{E+P+D}\right)+k_{d}(1-T)\left(\frac{D}{E+P+D}\right)
$$

Where,
$\mathrm{E}=$ Market value of equity
P $\quad=\quad$ Market value of preference capital
D $=$ Market value of debt
$\mathrm{k}_{\mathrm{e}}=$ Cost of equity
$\mathrm{k}_{\mathrm{p}} \quad=\quad$ Cost of preference capital
$\mathrm{k}_{\mathrm{d}}=$ Cost of debt
$\mathrm{T}=$ Tax rate .

8. Capital Structure

i. Overall capitalization rate of the firm
$k_{o}=k_{d} \frac{B}{B+S}+k_{e} \frac{S}{B+S}$
Where,
$\mathrm{k}_{\mathrm{d}} \quad=$ The cost of debt
B $\quad=\quad$ The market value of the outstanding debt
$\mathrm{S}=$ The market value of equity
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ The cost of equity
$\mathrm{k}_{\mathrm{o}} \quad=\quad$ The weighted average cost of capital
ii. Present value of a tax shield of interest payments:
a. When debt is perpetual $=t_{c} B$

Where,
$\mathrm{t}_{\mathrm{c}} \quad=\quad$ The tax rate on corporate income
B $\quad=\quad$ The market value of the debt
b. When corporate taxes are considered the value of the levered firm

$$
V=\frac{O\left(1-t_{c}\right)}{k}+t_{c} B
$$

Where,
$\mathrm{O}=$ Operating income
$\mathrm{t}_{\mathrm{c}} \quad=\quad$ The tax rate on corporate income
$\mathrm{B}=$ The market value of the debt
$\mathrm{k}=$ Interest rate on debt
c. If the personal tax rate is t_{p}, the tax advantage of debt $=t_{c} B\left(1-t_{p}\right)$

Where,
$\mathrm{t}_{\mathrm{c}} \quad=\quad$ The tax rate on corporate income
$\mathrm{B} \quad=\quad$ The market value of the debt
d. When the tax rate on stock income $\left(\mathrm{t}_{\mathrm{ps}}\right)$ differs from the tax rate on debt income (t_{pd}),
the tax advantage of debt capital $=1-\frac{\left(1-t_{c}\right)\left(1-t_{p s}\right)}{\left(1-t_{p d}\right)} \times B$
Where,
$\mathrm{t}_{\mathrm{c}} \quad=\quad$ The tax rate on corporate income
$\mathrm{B}=$ The market value of the debt.

9. Dividend Policy

i. Traditional Model (Graham-Dodd Model), $\mathrm{P}=\mathrm{m}(\mathrm{D}+\mathrm{E} / 3)$

Where,
$\mathrm{P}=$ The market price per share
$\mathrm{m} \quad=\quad$ The multiplier
$\mathrm{D}=$ The dividend per share
$\mathrm{E}=$ The earnings per share
ii. Walter Model, $\mathrm{P}=\frac{\mathrm{D}+(\mathrm{E}-\mathrm{D}) \mathrm{r} / \mathrm{k}_{\mathrm{e}}}{\mathrm{k}_{\mathrm{e}}}$

Where,
$\mathrm{P} \quad=\quad$ The market price per share
D $=$ The dividend per share
$\mathrm{E}=$ The earnings per share
$\mathrm{r}=$ The internal rate of return
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ The cost of equity capital
iii. Gordon Model, $\mathrm{P}_{0}=\frac{\mathrm{Y}_{0}(1-\mathrm{b})}{\mathrm{k}_{\mathrm{e}}-\mathrm{br}}$

Where,
$\mathrm{P}_{0} \quad=\quad$ The market price per share at the beginning of period 0
$\mathrm{Y}_{0}=$ The earnings per share for period 0
$\mathrm{b}=$ The retention ratio (retained earnings/total earnings)
$\mathrm{r} \quad=\quad$ The return on investments
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ The cost of equity capital or (Cost of capital of firm)
iv. \quad MM Approach, $P_{0}=\frac{D_{1}+P_{1}}{1+k_{e}}$

Where,
$\mathrm{P}_{0}=$ The market price per share at the beginning of period 0
$\mathrm{D}_{1} \quad=\quad$ The expected dividend per share for period 1
$\mathrm{P}_{1} \quad=\quad$ The market price per share at the end of period 1
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ The cost of equity capital
v. Corporate Dividend Behavior (Lintner Model)
$\mathrm{D}_{\mathrm{t}}=\mathrm{cr} \mathrm{EPS}_{\mathrm{t}}+(1-\mathrm{c}) \mathrm{D}_{\mathrm{t}-1}$
Where,
$\mathrm{D}_{\mathrm{t}} \quad=\quad$ The dividend per share for the time period t
c $\quad=\quad$ The weightage given to current earnings by the firm
$\mathrm{r}=$ The target pay-out rate
$E P S_{t}=$ The earnings per share for the time period t
$D_{t-1}=\quad$ The dividend per share for the time period $(t-1)$.

10. Estimation of Working Capital Needs

i. Durations at various stages of production
a. Raw Material Storage Period $=$

> Average Stock of Raw Material and Stores

Average Raw Materials and Stores consumed per day
b. Work-in-process period $=\frac{\text { Average Work-in-processinventory }}{\text { Average daily cost of production }}$
c. Finished goods storage period $=\frac{\text { Average finished good inventory }}{\text { Average daily cos t of sales }}$
d. Average collection period $=\frac{\text { Average accounts receivable }}{\text { Average daily credit sales }}$
e. Average payment period $=\frac{\text { Average accounts payable }}{\text { Average credit purchases per day }}$
ii. Net operating cycle period $=a+b+c+d-e$
iii. Weighted Operating Cycle $=$
$D_{\text {woc }}=W_{\text {rm }} D_{\text {rm }}+W_{\text {wip }} D_{\text {wip }}+W_{\text {fg }} D_{\text {fg }}+W_{\text {ar }} D_{\text {ar }}-W_{\text {ap }} D_{\text {ap }}$
$D_{\text {woc }}=$ Duration of weighted operating cycle
$\mathrm{W}_{\mathrm{rm}}=$ Weight of raw material expressed as a percentage of raw material cost to sales
$\mathrm{D}_{\mathrm{rm}}=$ Duration of raw material
$\mathrm{W}_{\text {wip }}=$ Weight of work-in-progress expressed as a percentage of work-in-progress cost to sales
$\mathrm{D}_{\text {wip }}=$ Duration of work-in-progress
$\mathrm{W}_{\mathrm{fg}}=$ Weight of finished goods expressed as a percentage of cost of goods sold to sales
$\mathrm{D}_{\mathrm{fg}} \quad=\quad$ Duration of finished goods
$\mathrm{W}_{\mathrm{ar}}=$ Weight of accounts receivables expressed as a percentage of sales to sales
$\mathrm{D}_{\mathrm{ar}}=$ Duration of accounts receivables
$\mathrm{W}_{\text {ap }}=$ Weight of accounts payables expressed as a percentage of raw material cost to sales
$\mathrm{D}_{\mathrm{ap}}=\quad$ Duration of accounts payables.

11. Inventory Management

i. Economic Order Quantity
$\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{UF}}{\mathrm{PC}}}$ units
Where,
$\mathrm{U}=$ Annual usage rate
$\mathrm{F}=$ Ordering cost
$\mathrm{C}=$ Carrying cost
$\mathrm{P}=$ Price per unit
ii. Reorder point $=\mathrm{S} \times \mathrm{L}+\mathrm{F} \sqrt{(\mathrm{S} \times \mathrm{R} \times \mathrm{L})}$

Where,
$\mathrm{S} \quad=\quad$ Usage in units
$\mathrm{L}=$ Lead time in days
$\mathrm{R}=$ Average number of units per order
$\mathrm{F}=$ Stock out acceptance factor.

12. Receivables Management

i. Effect of relaxing the credit standards on profit
$\Delta \mathrm{P}=\Delta \mathrm{S}(1-\mathrm{V})-\mathrm{k} \Delta \mathrm{I}-\mathrm{b}_{\mathrm{n}} \Delta \mathrm{S}$
Where,
$\Delta \mathrm{P}=$ Change in profit
$\Delta \mathrm{S}=\quad$ Increase in sales
$\mathrm{V}=$ Variable costs to sales ratio
$\mathrm{k}=$ Cost of capital
$\Delta \mathrm{I}=$ Increase in investment in receivables
$=\quad \frac{\Delta \mathrm{S}}{360} \times$ Average collection period $\times \mathrm{V}$
$\mathrm{b}_{\mathrm{n}} \quad=\quad$ Bad debts loss ratio on new sales
$1-\mathrm{V}=$ Contribution to sales ratio
ii. Effect of increasing the credit period on profit
$\Delta \mathrm{P}=\Delta \mathrm{S}(1-\mathrm{V})-\mathrm{k} \Delta \mathrm{I}-\mathrm{b}_{\mathrm{n}} \Delta \mathrm{S}$
The components of the formula are same excepting
$\Delta \mathrm{I}=\left(\mathrm{ACP}_{\mathrm{N}}-\mathrm{ACP}\right)\left[\frac{\mathrm{S}_{0}}{360}\right]+\mathrm{V}\left(\mathrm{ACP}_{\mathrm{N}}\right) \frac{\Delta \mathrm{S}}{360}$
Where,
$\Delta \mathrm{I} \quad=\quad$ Increase in investment in receivables
$\mathrm{ACP}_{\mathrm{N}}=\quad=\quad$ New ACP (after increasing credit period)
$\mathrm{ACP}_{\mathrm{O}}=$ Old ACP
$\mathrm{V} \quad=\quad$ Ratio of variable cost to sales
$\Delta \mathrm{S} \quad=\quad$ Increase in sales
$\mathrm{k} \quad=\quad$ Cost of capital
$\mathrm{S}_{0} \quad=\quad$ Sales before increasing the credit period
iii. The effect on profit for a change in cash discount rate
$\Delta \mathrm{P}=\Delta \mathrm{S}(1-\mathrm{V})+\mathrm{k} \Delta \mathrm{I}-\Delta \mathrm{DIS}$
Where,
$\Delta \mathrm{S} \quad=\quad$ Increase in sales
$\mathrm{V} \quad=\quad$ Ratio of variable cost to sales
$\mathrm{k}=$ Cost of capital
$\Delta \mathrm{I}=$ Savings in investment in receivables
$=\frac{S_{0}}{360}\left(\mathrm{ACP}_{\mathrm{O}}-\mathrm{ACP}_{\mathrm{N}}\right)-\mathrm{V} \frac{\Delta \mathrm{S}}{360} \mathrm{ACP}_{\mathrm{N}}$
$\Delta \mathrm{DIS}=\quad$ Increase in discount cost

Where,
$\mathrm{p}_{\mathrm{n}} \quad=\quad$ Proportion of discount sales after liberalizing
$\mathrm{S}_{\mathrm{o}}=$ Sales before liberalizing
$\Delta \mathrm{S}=$ Increase in sales
$d_{n}=$ New discount percentage
$\mathrm{p}_{0} \quad=\quad$ Proportion of discount sales before liberalizing
$\mathrm{d}_{0} \quad=\quad$ Old discount percentage
$\mathrm{ACP}_{\mathrm{O}}=\quad$ Average collection period before increasing cash discount
$\mathrm{ACP}_{\mathrm{N}}=\quad$ Average collection period after increasing cash discount
iv. Effect of decreasing the rigor of collection program on profit:
$\Delta \mathrm{P}=\Delta \mathrm{S}(1-\mathrm{V})-\mathrm{k} \Delta \mathrm{I}-\Delta \mathrm{BD}$
Where,
$\Delta \mathrm{P} \quad=\quad$ Change in profits
$\Delta \mathrm{S}=\quad$ Increase in sales
$\mathrm{V} \quad=\quad$ Variable costs to sales ratio
$\mathrm{k}=$ Cost of capital

$$
\begin{aligned}
\Delta \mathrm{I} & =\text { Increase in investment in receivables } \\
& =\frac{\mathrm{S}_{\mathrm{o}}}{360}\left(\mathrm{ACP}_{\mathrm{N}}-\mathrm{ACP}_{\mathrm{O}}\right)+\frac{\Delta \mathrm{S}}{360} \mathrm{ACP}_{\mathrm{N}} \times \mathrm{V} \\
\Delta \mathrm{BD} & =\text { Increase in bad debts cost } \\
& =\mathrm{b}_{\mathrm{n}}\left(\mathrm{~S}_{\mathrm{o}}+\Delta \mathrm{S}\right)-\mathrm{b}_{\mathrm{o}} \mathrm{~S}_{\mathrm{o}} \\
\mathrm{ACP}_{\mathrm{O}} & =\text { Average collection period before relaxing collection effort } \\
\mathrm{ACP}_{\mathrm{N}} & =\text { Average collection period after relaxing collection effort } \\
\mathrm{b}_{\mathrm{o}} & =\text { Proportion of bad debts to sales before relaxing collection effort } \\
\mathrm{b}_{\mathrm{n}} & =\text { Proportion of bad debts to sales after relaxing collection effort. }
\end{aligned}
$$

13. Cash Management

i. Baumol Model, $\mathrm{TC}=\mathrm{I}(\mathrm{C} / 2)+\mathrm{b}(\mathrm{T} / \mathrm{C})$

Where,

$$
\begin{array}{ll}
\mathrm{TC} & =\text { Total costs (total conversion costs }+ \text { total holding costs) } \\
\mathrm{I} & =\text { Interest rate on marketable securities per planning period } \\
\mathrm{C} & =\text { Amount of securities liquidated per batch } \\
\mathrm{T} & =\text { Estimated cash requirement over the planning period } \\
\mathrm{b} & =\text { Fixed conversion cost }
\end{array}
$$

The point where total costs are minimum:

$$
\mathrm{C}=\sqrt{\frac{2 \mathrm{bT}}{\mathrm{I}}}
$$

ii. Miller and Orr Model, $\quad \mathrm{RP}=\sqrt[3]{\frac{3 b \sigma^{2}}{4 \mathrm{I}}}+\mathrm{LL}$ and,
$\mathrm{UL}=3 \mathrm{RP}-2 \mathrm{LL}$ Where,

LL	$=$ Lower control limit
RP	$=$ Return point
$\mathrm{UL}=$	Upper control limit
b	$=$ Fixed conversion cost
I	$=$ Interest rate per day on marketable securities.

14. Capital Expenditure Decisions

i. Accounting Rate of Return

$$
(\mathrm{ARR})=\frac{\text { Average profit after tax }}{\text { Average book value of the investment }}
$$

ii. Net Present Value (NPV)

$$
\mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{CF}}{\mathrm{t}}{ }_{(1+\mathrm{k})^{\mathrm{t}}}-\mathrm{I}_{0}
$$

Where,

k	$=$ Cost of funds
CF_{t}	$=$ Cash flows at the end of the period t
I_{0}	$=$ Initial investment
n	$=$ Life of the investment

iii. Benefit-Cost Ratio (BCR)
$\mathrm{BCR}=\frac{\mathrm{PV}}{\mathrm{I}}$
Where,
BCR $=$ Benefit-Cost Ratio
PV $=$ Present Value of future cash flows
I $=$ Initial investment
iv. Net-benefit-cost Ratio
$\mathrm{NBCR}=\frac{\mathrm{NPV}}{\mathrm{I}}$
Where,
NPV $=$ Net present value
I $=$ Initial investment
v. Internal Rate of Return (IRR)
$\mathrm{I}_{0} \quad=\quad \sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{CF}_{\mathrm{t}}}{(1+\mathrm{k})^{\mathrm{t}}}$
Where,
$k=\quad I R R$, which is that rate of return where $\sum_{t=1}^{n} \frac{C F_{t}}{(1+k)^{t}}-I_{0}=0$
CF $=$ Cash flow
$\mathrm{I}_{0} \quad=\quad$ Initial investment
$\mathrm{n} \quad=\quad$ Life of investment.

IV. Financial Risk Management

1. Corporate Risk Management

i. Historical (ex-post)
a. Arithmetic mean return, $\overline{\mathrm{F}_{\mathrm{i}}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{it}}$
b. \quad Variance (risk), $\sigma_{i}^{2}=\frac{1}{\mathrm{n}-1} \sum_{\mathrm{t}=1}^{\mathrm{n}}\left(\mathrm{r}_{\mathrm{it}}-\overline{\mathrm{F}_{\mathrm{i}}}\right)^{2}$
c. Standard deviation, $\sigma_{i}=\sqrt{\text { Variance }}$
ii. Expected (ex-ante)
a. Expected return, $\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)=\sum_{\mathrm{s}=1}^{\mathrm{n}} \mathrm{r}_{\text {is }} \mathrm{P}_{\mathrm{s}}$
b. \quad Variance (Risk), $\sigma_{i}^{2}=\sum_{s=1}^{n}\left[r_{i s}-E\left(r_{i}\right)\right]^{2} \cdot P_{s}$

Where,
$\overline{\mathrm{j}}_{\mathrm{it}} \quad=\quad$ Historical (ex post) return generated by the ith stock in time period t
$\mathrm{r}_{\text {is }}=$ Expected (ex ante) return for the ith stock assuming that S state of the world occurs
$\mathrm{P}_{\mathrm{s}} \quad=\quad$ Probability that the S state of the world will occur
$r_{i} \quad=\quad$ Return on a security ' i '
iii. Estimated return on a stock $\left(\mathrm{R}_{\mathrm{s}}\right)=\alpha+\beta \mathrm{r}_{\mathrm{m}}$

Where,
$\mathrm{r}_{\mathrm{m}} \quad=\quad$ Return on market
$\beta=$ Measure of stock's sensitivity to the market index
$\alpha=$ Estimated return when the market return is zero
iv. According to the CAPM, the required return on a security
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right)$
Where,
$\mathrm{R}_{\mathrm{f}}=$ Return on risk-free investment
$\mathrm{R}_{\mathrm{m}}=$ Return on market
$\beta=$ Measure of stock's sensitivity to the market index.
2. Futures
i. Effective price $=\mathrm{Sp}_{2}+\left(\mathrm{Ft}_{1}-\mathrm{Ft}_{2}\right)$

If bases remains the same
Effective price $=\mathrm{Sp}_{1}$
Where,
$\mathrm{Sp}_{1}=$ Spot price at time t_{1}
$\mathrm{Sp}_{2}=$ Spot price at time t_{2}
$\mathrm{Ft}_{1}=$ Futures price at time t_{1}
$\mathrm{Ft}_{2}=$ Futures price at time t_{2}
Basis $=\quad$ Current cash price - Futures price
ii. Margin

Initial margin $=\mu+3 \sigma$
Where,
$\mu=$ Mean
$\sigma=$ Standard Deviation
iii. Relationship between the cash price and the futures price of any commodity:
$\mathrm{F}_{\mathrm{t}, \mathrm{T}}=\mathrm{C}_{\mathrm{t}}+\mathrm{C}_{\mathrm{t}} \times \mathrm{S}_{\mathrm{t}, \mathrm{T}} \times \frac{\mathrm{T}-\mathrm{t}}{365}+\mathrm{G}_{\mathrm{t}, \mathrm{T}}$
Where,
$\mathrm{C}_{\mathrm{t}}=$ Cash price at time t
$\mathrm{S}_{\mathrm{t}, \mathrm{T}}=$ Annualized interest rate on borrowings
$\mathrm{G}_{\mathrm{t}, \mathrm{T}}=$ Storage costs
$\mathrm{T}-\mathrm{t}=$ Time period
$\mathrm{F}_{\mathrm{t}, \mathrm{T}}=$ The futures price at time t , which is to be delivered at time period T
iv. Hedge Ratio $(\mathrm{HR})=\frac{\text { Futures position }}{\text { Underlying asset position }}$
v. Minimum variance hedge ratio, $\mathrm{h}=\mathrm{F}_{\mathrm{p}} \frac{\sigma_{\mathrm{Sp}}}{\sigma_{\mathrm{Ft}}}$

Where,
$\mathrm{h}=$ Hedge ratio
$F_{p}=$ Coefficient of correlation between S_{p} and F_{t}
$\sigma_{\mathrm{Ft}}=$ Standard deviation of $\Delta \mathrm{F}_{\mathrm{t}}$
$\sigma_{\mathrm{Sp}}=$ Standard deviation of $\Delta \mathrm{S}_{\mathrm{p}}$
$\Delta \mathrm{F}_{\mathrm{t}}=\quad$ Change of futures price during hedging
$\Delta \mathrm{S}_{\mathrm{p}}=\quad$ Change in spot price during hedging
vi. \quad T-bill purchase price $=$ Face value $\times\left[1-\frac{\% \text { discount }}{100} \times \frac{\text { Days to maturity }}{360}\right]$
vii. IRR (Implied Repo Rate)
$\operatorname{IRR}=\left(\mathrm{FP}_{\mathrm{t}, \mathrm{T}}-\mathrm{CP}_{\mathrm{t}, \mathrm{T}}\right) /\left(\mathrm{CP}_{\mathrm{t}, \mathrm{T}}\right) \times 360 / \mathrm{T}-\mathrm{t}$
Where,
$\mathrm{FP}_{\mathrm{t}, \mathrm{T}}=\quad$ Price of futures T-bill
$\mathrm{CP}_{\mathrm{t}, \mathrm{T}}=\quad$ Cash price of T -bill
$\mathrm{T}-\mathrm{t}=$ Time period
viii. Transaction price or cash price of the bond,
$P=$ Quoted price + Accrued interest
Invoice price $=($ Futures settlement price \times Conversion factor $) \quad+$ Accrued interest
ix. $\quad H R=-\left(\frac{\text { Cash market principal }}{\text { Futures market principal }}\right) \times$ Conversion factor
$H R=\binom{\frac{\text { Cash flow to be hedged }}{\text { Value of futures contract }} \times$ Conversion factor }{$\times \frac{\text { Portfolio duration }}{\text { CTD bond duration }}}$
x. Change in value of a bond,
$d B=-\frac{\text { Duration }}{1+y} \times B \times d y$
Where,
B $=$ Value of the bond
y $\quad=\quad$ Yield to maturity
dy $=\quad$ Change in yield
xi. Basis point value,
$B P V=\frac{\text { Duration }}{(1+y / 2)} \times$ Market value of bond $\times 1$ bp
$\mathrm{HR}=\frac{\mathrm{BPV}(\text { target })-\mathrm{BPV}(\text { existing })}{\mathrm{BPV}(\text { futures })}$
xii. $\quad N_{f}=-\left(\frac{D U R_{s}-D U R_{T}}{\operatorname{DUR}_{f}}\right)\left(\frac{S}{f}\right)\left(\frac{1+y_{f}}{1+y_{s}}\right)$

Where,
$\mathrm{N}_{\mathrm{f}} \quad=\quad$ Number of futures contract required to change the duration to $\mathrm{DUR}_{\mathrm{T}}$
$\mathrm{DUR}_{\mathrm{s}} \quad=\quad$ Duration of bond with face value S
$\mathrm{DUR}_{\mathrm{f}}=\quad=\quad$ Duration of futures contract with price f
$\mathrm{DUR}_{\mathrm{T}}=\quad=\quad$ Target portfolio duration
$\mathrm{y}_{\mathrm{f}} \quad=\quad$ Yield implied by futures price
$y_{\mathrm{s}} \quad=\quad$ Yield implied by spot portfolio
xiii. Treasury bond implied repo rate $=\left[\frac{f_{T}\left(\mathrm{CF}_{T}\right)+\mathrm{AI}_{T}}{\mathrm{f}_{\mathrm{t}}\left(\mathrm{CF}_{\mathrm{t}}\right)+\mathrm{AI}_{\mathrm{t}}}\right]^{1 /(\mathrm{T}-\mathrm{t})}-1$

Where,
$\mathrm{CF}_{\mathrm{t}}=$ Conversion factor for bond delivered at t
$\mathrm{CF}_{\mathrm{T}}=$ Conversion factor for bond delivered at T
$\mathrm{f}_{\mathrm{t}}=$ Today's futures price for contract expiring at t
$\mathrm{f}_{\mathrm{T}} \quad=\quad$ Today's futures price for contract expiring at T
$\mathrm{AI}_{\mathrm{t}}=$ Accrued interest on bond as of time t
$\mathrm{AI}_{\mathrm{T}}=$ Accrued interest on bond as of time T
$\mathrm{T}-\mathrm{t}=$ Time period.

3. Options

i. Pay-off from Buying a call option $=\operatorname{Max}(S-E, 0)$

Pay-off from Buying a put option $=\operatorname{Max}(\mathrm{E}-\mathrm{S}, 0)$
Where,
$\mathrm{S} \quad=\quad$ The market price of the underlying asset
$\mathrm{E}=$ The exercise price
ii. Margin
a. Margin is higher of the following for naked out of the money option

Margin $=\quad$ Contract size \times Option premium per share +0.2 (Market value of share) \times Contract size - Contract size (amount by which contract is out-of-the money)
Margin $=$ Contract size \times Option premium per share +0.10 (stock's price) x Contract size
b. Margin for naked option (in-the-money)
$=\quad$ Contract size \times Option premium per share +0.20 (stock's market price) \times Contract size
iii. Option price is a function of
C_{o} or $\mathrm{P}_{\mathrm{o}}=\mathrm{f}\left(\mathrm{S}_{\mathrm{o}}, \mathrm{E}, \sigma^{2}, \mathrm{t}, \mathrm{r}_{\mathrm{f}}, \mathrm{d}\right)$
Where,
$\mathrm{C}_{\mathrm{o}} \quad=\quad$ Value of call option
$\mathrm{P}_{\mathrm{o}} \quad=\quad$ Value of put option
$\mathrm{f} \quad=$ Function of
$\mathrm{E} \quad=\quad$ Exercise price
$\mathrm{S}_{0} \quad=\quad$ Price of underlying stock
$\sigma^{2} \quad=\quad$ Price volatility of underlying stock
$\mathrm{t} \quad=\quad$ Time to expiration
$\mathrm{r}_{\mathrm{f}} \quad=\quad$ Risk-free interest rate
$\mathrm{d} \quad=\quad$ Cash dividend
iv. Put-call parity equation
$\mathrm{C}+\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})}=\mathrm{P}+\mathrm{S}$
Where,
$\mathrm{C}=\quad$ Call price
$\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \quad=\quad$ Present value of exercise price
$\mathrm{P}=\quad$ Put price
$\mathrm{S}=\quad$ Current market price
v. Binomial Pricing

Call price, $C=\frac{C_{u} p+C_{d}(1-p)}{R}$

$$
p=\frac{R-d}{u-d}
$$

Where,
$\mathrm{u} \quad=\quad 1+$ percentage increase in stock price from time 0 to time t
$\mathrm{d}=1+$ percentage decrease in stock price from time 0 to time t
$\mathrm{C}=$ The call price
$\mathrm{C}_{\mathrm{u}} \quad=\quad$ The value of the call if the stock price increases
$\mathrm{C}_{\mathrm{d}} \quad=\quad$ The value of call if the stock price decreases
$\mathrm{R}=1+$ risk-free rate of return (r)
$\mathrm{p}=$ Probability of price increase
vi. Black-Scholes option pricing model:
a. For a non-dividend paying stock

$$
\mathrm{C}=\mathrm{S}_{0} \mathrm{~N}\left(\mathrm{~d}_{1}\right)-\mathrm{Xe} \mathrm{e}^{-\mathrm{r}(\mathrm{~T}-\mathrm{t})} \mathrm{N}\left(\mathrm{~d}_{2}\right)
$$

$$
\mathrm{P}=\mathrm{Xe}^{-\mathrm{r}(\mathrm{~T}-\mathrm{t})} \mathrm{N}\left(-\mathrm{d}_{2}\right)-\mathrm{S}_{0} \mathrm{~N}\left(-\mathrm{d}_{1}\right)
$$

Where,
$\mathrm{d}_{1}=\frac{\operatorname{In}\left(\mathrm{S}_{0} / \mathrm{X}\right)+\left(\mathrm{r}+\frac{\sigma^{2}}{2}\right)(\mathrm{T}-\mathrm{t})}{\sigma \sqrt{(\mathrm{T}-\mathrm{t})}}$
$\mathrm{d}_{2}=\frac{\operatorname{In}\left(\mathrm{S}_{0} / \mathrm{X}\right)+\left(\mathrm{r}-\frac{\sigma^{2}}{2}\right)(\mathrm{T}-\mathrm{t})}{\sigma \sqrt{(\mathrm{T}-\mathrm{t})}}$
Or,
$\mathrm{d}_{2} \quad=\quad \mathrm{d}_{1}-\sigma \sqrt{\mathrm{T}-\mathrm{t}}$
C $\quad=\quad$ The call option price
$\mathrm{P} \quad=\quad$ The put option price
$\mathrm{S}_{0} \quad=\quad$ The spot price of the underlying asset
$\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \quad=\quad$ Present value of exercise price
$\mathrm{r} \quad=\quad$ The risk-free rate
$(\mathrm{T}-\mathrm{t}) \quad=\quad$ The time to expiration expressed in years
$\sigma \quad=\quad$ The annualized standard deviation of returns on the underlying asset, i.e., the volatility measure
$\mathrm{N}(\mathrm{d}) \quad=\quad$ Cumulative standard normal distribution
e $=$ Exponential function
In $=$ Natural logarithm
b. For a dividend paying stock:

$$
\begin{aligned}
& \mathrm{C}=\mathrm{S}_{0} \mathrm{e}^{-\mathrm{qt}} \mathrm{~N}\left(\mathrm{~d}_{1}\right)-\mathrm{Xe}^{-\mathrm{rt}} \mathrm{~N}\left(\mathrm{~d}_{2}\right) \\
& \mathrm{P}=\mathrm{Xe}^{-\mathrm{rt}} \mathrm{~N}\left(-\mathrm{d}_{2}\right)-\mathrm{S}_{0} \mathrm{e}^{-\mathrm{qt}} \mathrm{~N}\left(-\mathrm{d}_{1}\right)
\end{aligned}
$$

Where,

$\mathrm{d}_{2} \quad=\quad \mathrm{d}_{1}-\sigma \sqrt{\mathrm{t}}$
$\mathrm{q} \quad=\quad$ Dividend yield
C $\quad=\quad$ The call option price
$\mathrm{P} \quad=\quad$ The put option price
$\mathrm{S}_{0} \quad=\quad$ The spot price of the underlying asset
$\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \quad=\quad$ Present value of exercise price
r $=$ The risk-free rate
$\sigma \quad=\quad$ The annualized standard deviation of returns on the underlying asset, i.e., the volatility measure
$\mathrm{N}(\mathrm{d}) \quad=\quad$ Cumulative standard normal distribution
e $\quad=$ Exponential function
In $\quad=\quad$ Natural logarithm
c. For a currency option:

$$
\begin{aligned}
& \mathrm{C}=\mathrm{S}_{0} \mathrm{e}_{\mathrm{f}}^{-\mathrm{r} \mathrm{t}} \mathrm{~N}\left(\mathrm{~d}_{1}\right)-\mathrm{Xe}^{-\mathrm{rt}} \mathrm{~N}\left(\mathrm{~d}_{2}\right) \\
& \mathrm{P}=\mathrm{Xe}^{-\mathrm{rt}} \mathrm{~N}\left(-\mathrm{d}_{2}\right)-\mathrm{S}_{0} \mathrm{e}_{\mathrm{f}}^{-\mathrm{r} t} \mathrm{~N}\left(-\mathrm{d}_{1}\right)
\end{aligned}
$$

Where,

$$
\begin{array}{ll}
& =\frac{\operatorname{In}\left(\mathrm{S}_{0} / \mathrm{X}\right)+\left(\mathrm{r}-\mathrm{r}_{\mathrm{f}}+\frac{\sigma^{2}}{2}\right) \mathrm{t}}{\sigma \sqrt{\mathrm{t}}} \\
\mathrm{~d}_{1} & = \\
\mathrm{C} & =\text { The call option price } \\
\mathrm{P} & =\text { The put option price } \\
\mathrm{r} & =\text { Domestic risk free rate } \\
\mathrm{r}_{\mathrm{f}} & =\text { Foreign risk free rate } \\
\mathrm{S}_{0} & =\text { The spot price of the underlying asset } \\
\mathrm{X} & =\text { The strike price of the option } \\
\mathrm{N}(\mathrm{~d}) & =\quad \text { Cumulative standard normal distribution } \\
\mathrm{e} & =\text { Exponential function } \\
\mathrm{In} & =\text { Natural logarithm. }
\end{array}
$$

4. Swaps
i. Valuation of interest rate swaps, $V=F_{B}-F_{F}$
$\mathrm{V}=$ Value of the swap
$\mathrm{F}_{\mathrm{B}} \quad=\quad$ Value of fixed coupon bond
$\mathrm{F}_{\mathrm{F}} \quad=\quad$ Value of floating rate bond
ii. Valuation of currency swaps, $V=P_{F}-P_{L}$
$\mathrm{V}=$ Value of the swap
$P_{F}=$ Value of foreign currency bond
$\mathrm{P}_{\mathrm{L}}=\quad$ Value of local currency bond.

5. Sensitivity of Option Premiums

i. Delta call $=\Delta C / \Delta S=N\left(d_{1}\right)$

Where,
$\Delta \mathrm{C}=\quad$ Change in the call price
$\Delta \mathrm{S}=$ Change in the stock price
ii. Delta put $=\Delta \mathrm{C} / \Delta \mathrm{S}=\mathrm{N}\left(\mathrm{d}_{1}\right)-1$
iii. Delta for portfolio of derivatives consisting of a single underlying asset:
$\Delta_{\mathrm{P}} \quad=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{W}_{\mathrm{j}} \Delta_{\mathrm{j}}$
Where,
$\Delta_{\mathrm{P}} \quad=\quad \Delta$ of portfolio
$\Delta_{\mathrm{j}} \quad=\quad \Delta$ of j derivative
$\mathrm{W}_{\mathrm{j}} \quad=\quad$ Weight of j derivative in the portfolio
iv. Theta of call $=\frac{-\mathrm{SN}^{\prime}\left(\mathrm{d}_{1}\right) \sigma}{2 \sqrt{\mathrm{~T}-\mathrm{t}}}-\mathrm{rXe}{ }^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \mathrm{N}\left(\mathrm{d}_{2}\right)$
$\mathrm{S} \quad=\quad$ The spot price of the underlying asset
$\mathrm{N}^{\prime}\left(\mathrm{d}_{1}\right)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{d}_{1}^{2 / 2}}$
$\sigma \quad=\quad$ The annualized standard deviation of returns on the underlying asset, i.e., the volatility measure
$(\mathrm{T}-\mathrm{t}) \quad=\quad$ The time to expiration expressed in years
v. \quad Theta of put $=\frac{-\mathrm{SN}^{\prime}\left(\mathrm{d}_{1}\right) \sigma}{2 \sqrt{\mathrm{~T}-\mathrm{t}}}+\mathrm{rXe} \mathrm{X}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \mathrm{N}\left(-\mathrm{d}_{2}\right)$

Where,
d_{1} and d_{2} are defined as per Black-Scholes model.
$\mathrm{N}^{\prime}(\mathrm{d})=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{d}^{2} / 2}$
$\sigma=$ The annualized standard deviation of returns on the underlying asset, i.e., the volatility measure
$\mathrm{S} \quad=\quad$ The spot price of the underlying asset
$(\mathrm{T}-\mathrm{t})=\quad$ The time to expiration expressed in years
vi. Vega of call or put $=S \sqrt{T-t} \quad N^{\prime}\left(d_{1}\right)$

Where,
$N^{\prime}\left(d_{1}\right)=\frac{1}{\sqrt{2 \pi}} e^{-d_{1}^{2 / 2}}$
$\mathrm{S} \quad=\quad$ The spot price of the underlying asset
$(\mathrm{T}-\mathrm{t})=\quad$ The time to expiration expressed in years
vii. Rho for a European put option $=-X(T-t) e^{-r(T-t)} N\left(-d_{2}\right)$
viii. Rho for a European call option $=X(T-t) e^{-r(T-t)} N\left(d_{2}\right)$
ix. Gamma of call or put $=N^{\prime}\left(d_{1}\right) / S \sigma \sqrt{T-t}$
x. Portfolio Insurance:

Delta of a put on an index
$\Delta=\mathrm{e}^{-\mathrm{q}(\mathrm{T}-\mathrm{t})}\left[\mathrm{N}\left(\mathrm{d}_{1}\right)-1\right]$
$\mathrm{d}_{1}=\frac{\operatorname{In}(\mathrm{S} / \mathrm{X})+\left(\mathrm{r}-\mathrm{q}+\sigma^{2} / 2\right)(\mathrm{T}-\mathrm{t})}{\sigma \sqrt{\mathrm{T}-\mathrm{t}}}$
r $=$ Domestic Risk-Free rate
$\mathrm{q} \quad=\quad$ Dividend yield.

6. Value at Risk

i. Daily volatility $=\frac{\text { Annual volatility }}{\sqrt{\text { Number of working days }}}$

Daily value-at-Risk (VaR) (at a confidence level $\mathrm{x} \%$)
$=$ Position Value x Daily Volatility $\times \mathrm{K}(\mathrm{x})$
Where,
$\mathrm{K}(\mathrm{x})=$ Factor relating to $\mathrm{x} \%$ of confidence level.

V. International Finance

1. The Foreign Exchange Market

i. The conditions for no arbitrage possibility
a. $\quad(\mathrm{A} / \mathrm{B})_{\text {ask }} \times(\mathrm{B} / \mathrm{C})_{\text {ask }} \times(\mathrm{C} / \mathrm{A})_{\text {ask }} \geq 1$
b. $\quad(\mathrm{A} / \mathrm{B})_{\text {bid }} \times(\mathrm{B} / \mathrm{C})_{\text {bid }} \times(\mathrm{C} / \mathrm{A})_{\text {bid }} \leq 1$
ii. The annualized percentage premium on currency B for quote (A / B)

$$
\frac{\operatorname{Forward}(\mathrm{A} / \mathrm{B})_{\operatorname{mid}}-\operatorname{Spot}(\mathrm{A} / \mathrm{B})_{\operatorname{mid}}}{\operatorname{Spot}(\mathrm{A} / \mathrm{B})_{\operatorname{mid}}} \times \frac{12}{\mathrm{~m}} \times 100
$$

Where,
$\mathrm{m} \quad=\quad$ Maturity of the forward contract in months.

2. Exchange Rate Determination

i. Interest rate parity (Investor's decision)
a. Investment in currency A is profitable, if

$$
\left(1+r_{A}\right)>\frac{F(A / B)}{S(A / B)} \times\left(1+r_{B}\right)
$$

b. Investment in currency B is profitable, if

$$
\left(1+\mathrm{r}_{\mathrm{A}}\right)<\frac{\mathrm{F}(\mathrm{~A} / \mathrm{B})}{\mathrm{S}(\mathrm{~A} / \mathrm{B})} \times\left(1+\mathrm{r}_{\mathrm{B}}\right)
$$

c. The investor would be indifferent to the choice of currencies, if $\left(1+\mathrm{r}_{\mathrm{A}}\right)=\frac{\mathrm{F}(\mathrm{A} / \mathrm{B})}{\mathrm{S}(\mathrm{A} / \mathrm{B})} \times\left(1+\mathrm{r}_{\mathrm{B}}\right)$

Where,

$\mathrm{F}(\mathrm{A} / \mathrm{B})$	$=$Forward rate of currency B expressed in terms of currency A
$\mathrm{S}(\mathrm{A} / \mathrm{B}) \quad=\quad$Spot rate of currency B expressed in terms of $\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}$$\quad=$Investment rates in currencies A and B respectively	

ii. Interest rate parity (Borrower's decision)
a. Borrowing in currency A is profitable, if $\left(1+r_{A}\right)<\frac{F(A / B)}{S(A / B)} \times\left(1+r_{B}\right)$
b. Borrowing in currency B is profitable, if $\left(1+r_{A}\right)>\frac{F(A / B)}{S(A / B)} \times\left(1+r_{B}\right)$
c. The borrower would be indifferent to the choice of currency, if $\left(1+\mathrm{r}_{\mathrm{A}}\right)=\frac{\mathrm{F}(\mathrm{A} / \mathrm{B})}{\mathrm{S}(\mathrm{A} / \mathrm{B})} \times\left(1+\mathrm{r}_{\mathrm{B}}\right)$

Where,

$\mathrm{F}(\mathrm{A} / \mathrm{B})$	$=$Forward rate of currency B expressed in terms of currency A
$\mathrm{S}(\mathrm{A} / \mathrm{B})$	$=$Spot rate of currency B expressed in terms of currency A
$\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}$	$=$Borrowing interest rates in currencies A and B respectively.

3. International Project Appraisal

i. The adjusted present value of a foreign project

$$
\begin{aligned}
& \text { APV }=-S_{0}\left(C_{0}-A_{0}\right)+\sum_{t=1}^{n} \frac{\left(S_{t}^{*} C_{t}^{*}+E_{t}^{*}\right)(1-T)}{\left(1+k_{e}\right)^{t}} \\
& +\sum_{t=1}^{n} \frac{D_{t} T}{\left(1+k_{d}\right) t}+\sum_{t=1}^{n} \frac{\mathrm{rB}_{0} T}{\left(1+k_{b}\right)^{t}}+S_{0}\left[\mathrm{CL}_{0}-\sum_{t=1}^{n} \frac{R_{t}}{\left(1+\mathrm{k}_{\mathrm{c}}\right)^{\mathrm{t}}}\right] \\
& +\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{P_{\mathrm{t}}^{*} T}{\left(1+\mathrm{k}_{\mathrm{p}}\right)^{\mathrm{t}}}+\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{I}_{\mathrm{t}}}{\left(1+\mathrm{k}_{\mathrm{i}}\right)^{\mathrm{t}}}
\end{aligned}
$$

Where,
\(\left.\left.\begin{array}{rl}APV \& =Adjusted Present Value

\mathrm{S}_{0} \& =Current exchange rate

\mathrm{C}_{0} \& =Initial cash outlay in foreign currency terms

\mathrm{A}_{0} \& =Activated funds

\mathrm{S}_{\mathrm{t}}^{*} \& =Expected exchange rate at time ' \mathrm{t} '

\mathrm{n} \& =Life of the project

\mathrm{C}_{\mathrm{t}}^{*} \& =Expected cash flow at time ' \mathrm{t} ', in foreign currency terms

\mathrm{E}_{\mathrm{t}}^{*} \& =Expected effect on the cash flows of other divisions at time ' \mathrm{t} ', expressed\end{array}\right] $$
\begin{array}{l}\text { in domestic currency terms; can be either positive or negative }\end{array}
$$\right]\)| Domestic or foreign tax rate, whichever is higher |
| :--- |

4. International Equity Investments

i. Variance of domestic currency returns on foreign investment

$$
=\quad \operatorname{Var}\left(\mathrm{r}_{\mathrm{f}}\right)+\operatorname{Var}\left(\mathrm{S}^{\sim}\right)+2 \operatorname{Cov}\left(\mathrm{r}_{\mathrm{f}}, \mathrm{~S}^{\sim}\right)
$$

ii. According to international CAPM, the return on a security

$$
r_{i}=r_{f}+\beta_{w}\left(r_{w}-r_{f}\right)
$$

Where,
$\mathrm{r}_{\mathrm{f}} \quad=$ World risk-free rate of return
$\beta_{w}=$ World beta of the security
$=\frac{\operatorname{Cov}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{w}}\right)}{\operatorname{Var}\left(\mathrm{r}_{\mathrm{w}}\right)}$
$\mathrm{r}_{\mathrm{w}} \quad=\quad$ Return on the world-market portfolio.
5. Short-term Financial Management
i. The break-even-size of investment

$$
\mathrm{E}=\mathrm{M}[(\mathrm{k}-\mathrm{i}) /(\mathrm{k}-\mathrm{d})]
$$

Where,
$\mathrm{E} \quad=\quad$ Surplus funds at break-even level
$\mathrm{M}=$ Minimum lot of investment
$\mathrm{k}=$ Interest rate on borrowed funds
i $=$ Rate of interest for investment
$\mathrm{d} \quad=\quad$ Rate of interest for deposit.

VI. Investment Banking and Financial Services

1. Money Market

i. Annual Turnover of Primary Dealer/Satellite Dealer
$=\frac{\text { Total Purchases and Sales during the year }}{\text { Average month-end stocks during the year }}$

2. Rights Issues

i. Value of a Share after the Rights Issue $=\frac{\mathrm{NP}_{0}+\mathrm{S}}{\mathrm{N}+1}$

Where,
$\mathrm{N} \quad=\quad$ Number of existing shares for a rights share
$\mathrm{P}_{0} \quad=\quad$ Cum-rights market price per share
$\mathrm{S}=$ Subscription price at which the rights shares are issued
ii. Value of a Right $(\mathrm{R})=\frac{\mathrm{P}_{\mathrm{r}}-\mathrm{S}}{\mathrm{N}+1}$

Where,
$\mathrm{R} \quad=\quad$ Value of a right
$\mathrm{P}_{\mathrm{r}} \quad=\quad$ Market value of share trading with rights
$\mathrm{S}=$ Strike price
$\mathrm{N}=$ Number of rights to purchase a new share
iii. Share Price Ex-Rights
a. Market Value of each Right after the Rights Issue, $R=\frac{P_{e}-S}{N}$
b. Value of Shareholding after Subscription $=\mathrm{NP}_{0}+\mathrm{S}$

Where,
$\mathrm{P}_{\mathrm{e}} \quad=\quad$ Price of share ex-rights
$\mathrm{S}=$ Strike price
$\mathrm{N}=\quad$ Number of rights to purchase a new share
$\mathrm{P}_{0}=$ Cum-rights market price per share.
3. Lease Evaluation
i. Lessee's Angle
a. Weingartner's Model:
$\Delta \mathrm{NPV}(\mathrm{L})=$ Initial Investment - P.V. (Lease Rentals) - Management Fee + P.V. (Tax Shield on Lease Rentals) + P.V. (Tax Shield on Management Fee) - P.V. (Tax Shield on Depreciation) - P.V. (Net Salvage Value).
b. Equivalent Loan Model:

Net Value of Lease $=\quad+$ Initial Investment - P.V. (Lease Payment Discounted at K_{d}) + P.V. (Tax Shield on Lease Payments Discounted at k_{d}) - P. V. (Depreciation Tax Shield discounted at k_{d}) - P.V. (Net Salvage value Discounted at k_{d}) - P.V. (Interest Tax Shield on displaced Debt Discounted at k_{d})

Where,
$\mathrm{K}_{\mathrm{d}}=$ Pre-tax marginal cost of debt
$\mathrm{k}_{\mathrm{d}} \quad=\quad$ Post-tax marginal cost of debt
$=\quad \mathrm{K}_{\mathrm{d}}(1-\mathrm{T})$
$\mathrm{T}=$ Marginal tax rate
c. Bower-Herringer-Williamson (BHW) Model:

Financial Advantage of Leasing $[\mathrm{FA}(\mathrm{L})]=$
Initial Investment - P.V. of Lease Payments
Or
FA (L) = P.V. of Loan Payments - P.V. of Lease Payments
Operating Advantage of Leasing $[\mathrm{OA}(\mathrm{L})]=$
P.V. of lease related tax shield - P.V. of loan related tax shield - P.V. of Residual Value
d. Bower's Model:

Cost of Purchase (COP) = Initial investment - P.V. (Tax Shields on depreciation discounted at an unspecified rate) P.V. (Net salvage discounted at marginal cost of capital)
Cost of Leasing (COL) = P.V. (Lease Rentals discounted at pre-tax cost of debt) - P.V. (Tax Shield on lease rentals discounted at an unspecified rate) + P.V. (Tax Shield on interest discounted at an unspecified rate)
e. Suggested Framework for Lease Evaluation:

NAL $=$ Investment Cost - P.V. (Lease Payments discounted at K_{d}) + P.V. (Tax Shields on Lease Payments Discounted at k)Management Fee + P.V. (Tax Shield on Management Fee discounted at k) - P.V. (Depreciation Tax Shields discounted at k) - P.V.(Interest Tax Shields Discounted at k) - P.V.(Residual value discounted at k)
ii. Lessor's Angle
a. Present value of rental stream:

$$
\mathrm{PV}=\mathrm{L} \times\left(\frac{(1+\mathrm{j})}{(1+\mathrm{i})}\right)+\mathrm{PVIFA}_{(\mathrm{j}, \mathrm{n})}
$$

Where,
PV = Present value of rental stream
Where, rentals increase/decrease at constant rate p.a.
L = Lease rental per period
$\mathrm{n}=$ Duration of lease in years
$\mathrm{j}=[(\mathrm{i}-\mathrm{g}) /(1+\mathrm{g})]$
$\mathrm{i}=$ Pre-tax yield p.a.
$\mathrm{g} \quad=\quad$ Constant rate of increase/decrease p.a.
b. Net Advantage of Leasing (NAL):

NAL $=\quad-$ Initial Investment + P.V. (Lease Payments) - P.V. (Tax Lease Payments) + P.V. (Management Fee) - P.V. (Tax on Management Fee) + PV. (Tax shields on Depreciation) + P.V. (Net Salvage Value) - P.V. (Initial Direct Costs) + P.V. (Tax Shield on Initial Direct Costs)
c. Gross Yield:

The gross yield of a lease can be defined as that compounded rate of return (discount rate) that equates: P.V (Lease Rentals) + P.V (Residual Value) to Investment cost
Where, management fee and initial direct costs are involved the gross yield will be the discount rate that equates:
P.V. (Lease Rentals) + P.V. (Residual Value) + Management Fees $=$ Investment Cost + Initial Direct Costs)
d. Add on yield $=\frac{\text { Annual charge for credit }}{\text { Initialinvestment }} \times 100$
e. IRR based pricing:

$$
\mathrm{i}=\mathrm{i}_{\mathrm{F}}+\mathrm{i}_{\mathrm{e}}+\mathrm{i}_{\mathrm{d}}
$$

Where,
i $=$ Risk adjusted rate of return
$\mathrm{i}_{\mathrm{F}} \quad=\quad$ Risk-free rate of return
$\mathrm{i}_{\mathrm{e}}=$ Premium for the risk characterizing the existing lease investments
$\mathrm{i}_{\mathrm{d}} \quad=\quad$ Premium for the differential risk characterizing the lease investment under review
f. Value of the asset or the implied interest return earned by the lessor
$=\sum_{\mathrm{t}=1}^{\mathrm{mn}} \frac{\text { Lease Payments }}{(1+\mathrm{R} / \mathrm{n})^{\mathrm{t}}}+\frac{\text { Lease Value }}{(1+\mathrm{R} / \mathrm{n})^{\mathrm{mn}}}$
Where,
$\mathrm{n} \quad=\quad$ Length of the lease term
$\mathrm{m}=$ Number of lease payments in a year
R $=$ Implied Interest Return
If the lease payments are made in advance, $\sum_{\mathrm{t}=1}^{\mathrm{mn}}$ would be changed to $\sum_{\mathrm{t}=0}^{\mathrm{mn}-1}$
g. Internal Rate of Return or After tax cost of leasing
$=-A+\sum_{t=1}^{n} \frac{L_{t}}{(1+r)^{t}}+\frac{T\left(L_{t}-D_{t}\right)}{(1+r)^{t}}-\frac{R V}{(1+r)^{n}}$
Where,
$\mathrm{A} \quad=\quad$ The cost of the asset to be leased
$\mathrm{L}_{\mathrm{t}} \quad=\quad$ The periodic lease payments at the end of the each period
$\mathrm{T}=$ The corporate tax rate
$\mathrm{n} \quad=\quad$ The lease term
$D_{t}=$ The depreciation that can be claimed for tax purpose
$\mathrm{RV}=$ The residual value of the asset.
4. Hire Purchase
i. From Hirer's Angle:
a. \quad COHP $=$ Down payment + P.V (Hire Payments) + Service Fee - P.V (Tax shields on charge for credit of Hire payments \& Service Fee) - P.V (Tax shields on Depreciation) - P.V (Net salvage value)
b. \quad COL $=\quad \begin{aligned} & \text { P.V (Lease payments })+ \text { Lease management fee }- \text { P.V } \\ & \text { shields on lease payments \& lease management Feee })\end{aligned}($ Tax
ii. From Finance Company's Angle:
a. NPV (Lease Plan) = - Initial Investment - Initial Direct costs + P.V (Lease Rentals) + Lease Management Fee + P.V (Tax shields on Initial direct costs \& Depreciation) + P.V (Net Salvage Value) - P.V (Tax liability on Lease Rentals and Lease Management Fee)
b. NPV (HP Plan) $=\quad-$ Loan amount - Initial Direct costs + Documentation \& Service Fee + P. V (H.P installments) - P.V (Interest Tax on Finance Income) - P.V (Income Tax on Finance Income netted for interest tax) + P.V (Tax shield on initial Direct costs) - P.V (Income Tax on Documentation \& Service Fee)
iii. Effective rate of interest:

If payments are made in arrears,
$I_{\text {(app) }}=\frac{n}{n+1} \times 2 F$
If the payments are made in advance,
$\mathrm{i}_{\text {app }}=\frac{\mathrm{n}}{\mathrm{n}-1} \times 2 \mathrm{~F}$
Where,
$\mathrm{F} \quad=\quad$ Flat rate of interest per unit time
$\mathrm{N}=$ Total number of repayments
iv. Interest Rebate:

Rule of 78 method
$R=\frac{t(t+1)}{n(n+1)} \times D$
Where,
$\mathrm{t}=$ Number of level installment that are not due and outstanding
$\mathrm{n}=$ Total number of level installment
D $\quad=$ Total change for credit
R = Interest rebate
Under modified Rule of 78,
Interest Rebate $=\frac{(\mathrm{t}-\alpha)(\mathrm{t}-\alpha+1)}{\mathrm{n}(\mathrm{n}+1)} \times \mathrm{D}$
Where,
$\alpha=$ Deferent period
Under Hire Purchase Act, 1972,
Interest rebate $=\frac{2}{3} \times \frac{t}{n} \times D$

5. Consumer Credit

i. The effective rate of interest is the discount rate in the equation:

Loan Amount - P.V (Installments paid) - Service Fee + P.V (Accumulated Value of Deposit) + P.V (Prompt Payment Bonus) $=0$

6. Housing Finance

i. Disbursement Amount, RD

$$
=\quad \mathrm{AV} \times \frac{\mathrm{CC}}{100} \times \frac{\mathrm{PC}}{100}+\mathrm{AV} \times \frac{\mathrm{LC}}{100}-\mathrm{BC}-\mathrm{CM}
$$

Where,
RD $=$ Recommendation for disbursement in rupees
$\mathrm{AV}=$ Aggregate value $=\mathrm{LC}+\mathrm{CC}$
PC $\quad=\quad$ Progress of construction in $\%$ points
LC = Land component
$\mathrm{CC}=$ Cost of construction + Overheads + Profits
$\mathrm{BC}=$ Borrower's contribution
$\mathrm{CM}=$ Cumulative disbursement made
ii. Equated Monthly Installments $=\frac{1}{12}\left(\frac{\operatorname{Lr}(1+\mathrm{r})^{\mathrm{n}}}{(1+\mathrm{r})^{\mathrm{n}}-1}\right)$

Where,
$\mathrm{L}=$ Loan
$\mathrm{r} \quad=\quad$ Rate of interest in decimals
$\mathrm{n}=$ Period.
7. Venture Capital
i. $\quad \mathrm{NPV}=[($ Cash $) /($ Post $)] \times[($ PAT \times PER $)] \times \mathrm{k}$

Where,
NPV $=\quad$ Net Present Value of the cash flows relating to the investment
Post
$=\quad$ Pre + cash
Cash represents the amount of cash.
'pre' $=$ The pre-money valuation of the firm estimated by the 'investor'
k
$=\quad$ The PVIF for the investment horizon
PER $=\quad$ Price Earnings Multiple
PAT $\quad=\quad$ Profit After Tax.

VII. Management Accounting

1. Cost-Volume-Profit Analysis

i. Break-Even Point (Units) =
$=\quad \frac{\text { Fixed Cost }}{\text { Selling Price per Unit }- \text { Variable Cost per Unit }}$
$=\quad \frac{\text { Fixed Cost }}{\text { Contribution per Unit }}$
Or, $\quad \frac{\text { Break Even Sales(Rs.) }}{\text { Selling Price per Unit }}$
ii. Break-Even Point (Rs.)
$=\frac{\text { Fixed Cost } \mathrm{x} \text { Selling Price per Unit }}{\text { Selling Price per Unit }- \text { Variable Cost per Unit }}$
$=\frac{\text { Fixed Cost } \mathrm{x} \text { Selling Price per Unit }}{\text { Contribution per Unit }}$
$=\frac{\text { Fixed Cost }}{\text { Contribution per unit } \div \text { Selling price per unit }}$
$=\frac{\text { Fixed Cost }}{\text { P/V ratio }}=\frac{\text { Fixed Cost }}{1-\frac{\text { Variable Cost }}{\text { Sales }}}$
Or,
Break-even Point (Units) \times Selling Price per Unit
iii. At Break-even Point

Sales - Variable Cost - Fixed Cost $=0$
Or, Contribution - Fixed Cost $=0$
Or, Contribution $=$ Fixed Cost
iv. Calculation of Required Sales value to earn a desired amount of profit

$$
=\quad \frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { P/V Ratio }}
$$

v. Profit/Volume Ratio

$$
\begin{aligned}
\text { a. P/V Ratio } & =\frac{\text { Sales }- \text { Variable Cost }}{\text { Sales }} \times 100 \\
& =\frac{\text { Contribution }}{\text { Sales }} \times 100 \\
& =\frac{\text { Fixed Cost }+ \text { Profit }}{\text { Sales }} \times 100 \\
& \text { Or, } \\
& \frac{\text { Selling price per unit }- \text { Variable cost per unit }}{\text { Selling price per unit }} \times 100 \\
& =\frac{\text { Contribution per unit }}{\text { Selling price per unit }} \times 100
\end{aligned}
$$

b. P/V ratio $=\frac{\text { Change in Contribution }}{\text { Change in Sales }} \times 100$
Or
$\frac{\text { Change in Contribution per unit }}{\text { Change in Selling Price per unit }} \times 100$
Or
$\frac{\text { Change in Profit }}{\text { Changein Sales }} \times 100$
vi. Margin of Safety $=$ Total Sales - Break-even Sales

$$
\text { Or } \quad \frac{\text { Profit }}{\text { P/V ratio }}
$$

$$
=\quad \frac{\text { Profit } \times \text { Selling price per unit }}{\text { Selling price per unit }- \text { Variable cost per unit }}
$$

vii. Margin of Safety as a percentage of Total Sales

$$
=\quad \frac{\text { Margin of Safety }}{\text { TotalSales }} \times 100
$$

2. Standard Costing and Variance Analysis

i. Material Cost Variance
$=$ Usage Variance + Price Variance
ii. Material Cost Variance $=(\mathrm{SQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})$
iii. Material Usage Variance $=(\mathrm{SQ}-\mathrm{AQ}) \times \mathrm{SP}$
iv. Material Price Variance $=(\mathrm{SP}-\mathrm{AP}) \times \mathrm{AQ}$

Where,
$S Q=$ Standard Quantity for the actual output
$\mathrm{SP}=$ Standard Price
$\mathrm{AQ}=$ Actual Quantity
$\mathrm{AP}=$ Actual Price
v. Material Mix Variance $=$ (Standard cost of standard mix of the actual quantity - Standard cost of actual mix of the actual quantity)

		Or	
		$=$	(Revised standard mix of actual input - Actual mix) \times Standard Price
vi.	Material Yield Variance	=	$\begin{aligned} & (\text { Standard yield specified }- \text { Actual yield }) \times \\ & \text { Standard cost per unit } \end{aligned}$
		Or	
			(Standard loss on actual input - Actual loss) \times Standard cost per unit
vii.	Sub-usage Variance	=	(Standard quantity - Revised standard proportion of actual input) \times Standard cost perunit of input
viii.	Labor Cost Variance	$=$	Efficiency Variance + Rate Variance

ix.	Labor Cost Variance =	$(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$	
	Where,		
	SH = Standard Hours		
	$\mathrm{SR}=$ Standard Rate		
	$\mathrm{AH}=$ Actual Hours		
	$\mathrm{AR}=$ Actual Rate		
X.	Labor Efficiency Variance	$=$	(Standard hours for the actual output Actual hours) \times Standard rate per hour
xi.	Labor Rate Variance	$=$	(Standard rate - Actual rate) \times Actual hours
xii.	Labor Mix Variance	=	(Revised standard labor mix in terms of actual total hours - Actual labor mix) \times Standard rate per hour
xiii.	Labor Yield Variance	$=$	(Standard output based on actual hours Actual output) \times Average standard labor rate per unit of output
		Or	(Standard loss on actual hours - Actual loss) \times Average standard labor rate per unit of output
xiv.	Labor Efficiency Sub-variance	$=$	(Standard mix - Revised Standard mix) \times Standard rate.

VIII. Portfolio Management

1. Capital Market Theory

i. Variance of a portfolio of n securities: $\quad \sigma_{n}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} W_{i} W_{j} \sigma_{i j}$

Where,
$\mathrm{W}_{\mathrm{i}}=$ Weight of ith security
$W_{j}=W$ Weight of jth security
$\sigma_{\mathrm{ij}}=$ Covariance between ith security and jth security
When portfolios are equally weighted,
the expected level of portfolio risk can be expressed as
$\mathrm{E}\left(\sigma_{\mathrm{n}}^{2}\right)=1 / \mathrm{n}\left[\mathrm{E}\left(\sigma_{\mathrm{i}}^{2}\right)-\mathrm{E}\left(\sigma_{\mathrm{ij}}\right)\right]+\mathrm{E}\left(\sigma_{\mathrm{ij}}\right)$
Where,
$\mathrm{E}\left(\sigma_{\mathrm{i}}^{2}\right)=$ Average variance of an individual security that is included in the portfolio
$\mathrm{E}\left(\sigma_{\mathrm{ij}}\right)=$ Average pair wise covariance between securities in the portfolio
ii. Tax-adjusted CAPM $\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)$

$$
=\quad \mathrm{r}_{\mathrm{f}}(1-\mathrm{T})+\beta_{\mathrm{i}}\left[\mathrm{E}\left(\mathrm{r}_{\mathrm{M}}\right)-\mathrm{r}_{\mathrm{f}}(1-\mathrm{T})-\mathrm{TD}_{\mathrm{m}}\right]+\mathrm{TD}_{\mathrm{i}}
$$

Where,
$\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)=$ Expected return on stock i
$\mathrm{r}_{\mathrm{f}} \quad=\quad$ Risk-free rate of interest
$\beta_{i}=$ Beta coefficient of stock i
$\mathrm{D}_{\mathrm{m}}=$ Dividend yield on the market portfolio
$D_{i}=$ Dividend yield on stock i
$T=\frac{\left(T_{d}-T_{g}\right)}{\left(1-T_{g}\right)}=$ Tax factor
$\mathrm{T}_{\mathrm{d}}=$ Tax rate on dividends
$\mathrm{T}_{\mathrm{g}}=$ Tax rate on (long-term) capital gains.

2. Arbitrage Pricing Theory (APT Model)

i. $\quad E\left(r_{\mathrm{i}}\right)=\tau_{0}+\tau_{1} \beta_{\mathrm{i} 1}+\tau_{2} \beta_{\mathrm{i} 2}+\tau_{3} \beta_{\mathrm{i} 3}+\ldots+\tau_{\mathrm{M}} \beta_{\mathrm{iM}}$

Where,
$\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)=$ Expected return on Asset i
$\tau_{0}=$ Expected return on an asset with zero systematic risk
$=r_{f}$ if riskless borrowing and lending exist
$\tau_{\mathrm{j}}=$ Risk premium, or market price of risk, associated with the j th factor
$=\mathrm{E}\left(\mathrm{r}_{\mathrm{j}}\right)-\tau_{0}$, or τ_{j} riskless borrowing and lending exist
$\beta_{\mathrm{ij}}=$ Sensitivity or beta coefficient for security i that is associated with index j .

3. Asset Allocation

i. $\quad U_{m k}=E\left(R_{m}\right)-\frac{\sigma_{m}^{2}}{t_{k}}$

Where,
$\mathrm{U}_{\mathrm{mk}}=\quad$ The expected utility of asset mix m for investor k
$E\left(R_{m}\right)=$ The expected return for asset mix m
$\sigma_{\mathrm{m}}^{2}=$ The standard deviation for asset mix m
$\mathrm{t}_{\mathrm{k}} \quad=\quad$ Investor k's risk tolerance.

4. Delineating Efficient Frontiers

i. Optimal portfolio selection using sharpe's optimization
a. Cut-off point $\left(C_{i}\right)=\frac{\sigma_{M}^{2} \sum_{i=1}^{i} \frac{\left(R_{i}-R_{f}\right)}{\sigma_{e i}^{2}} \beta_{i}}{1+\sigma_{M}^{2} \sum_{i=1}^{i} \frac{\beta_{i}^{2}}{\sigma_{e i}^{2}}}$
b. The proportion invested in each security, $\mathrm{X}_{\mathrm{i}}=\frac{\mathrm{Z}_{\mathrm{i}}}{\sum_{\mathrm{N}}}$ $\sum_{i=1}^{z_{i}}$
c. The relative investment in each security
$Z_{i}=\frac{\beta_{i}}{\sigma_{\text {ei }}^{2}}\left[\frac{R_{i}-R_{f}}{\beta_{i}}-C^{*}\right]$
Where,

σ_{M}^{2}	$=$ Variance in the market index
σ_{ei}^{2}	$=$ The stock unsystematic risk
R_{i}	$=$ Expected return on stock i
R_{f}	$=$ Risk-free rate of return
β	$=$ Beta of the stock.

5. Portfolio Analysis

i. Expected return of a portfolio of n securities, $E_{p}=\sum_{i=1}^{n} W_{i} E\left(R_{i}\right)$

Where,
$\mathrm{E}_{\mathrm{p}} \quad=\quad$ The portfolio return
$\mathrm{W}_{\mathrm{i}}=$ The proportion of investment in security i
$\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)=$ The expected return on security i
$\mathrm{n} \quad=\quad$ The total number of securities in the portfolio
ii. Holding period yield $=\frac{\left(\mathrm{P}_{\mathrm{it}}-\mathrm{P}_{\mathrm{it}-1}\right)+\mathrm{D}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{it}-1}}$

Where,
$\mathrm{P}_{\mathrm{it}} \quad=\quad$ The current price of the security
$P_{i t-1}=$ The price of the security at the beginning of period t
$\mathrm{D}_{\mathrm{t}} \quad=\quad$ The dividend received during the period t
iii. Variance or Risk of a portfolio
$\operatorname{Var}\left(\mathrm{R}_{\mathrm{p}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{W}_{\mathrm{i}}^{2} \operatorname{Var}\left(\mathrm{R}_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1, \mathrm{i} \neq \mathrm{j}}^{\mathrm{n}} \mathrm{W}_{\mathrm{i}} \mathrm{W}_{\mathrm{j}} \operatorname{Cov}\left(\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}\right)$
Where,
$\operatorname{Var}\left(\mathrm{R}_{\mathrm{p}}\right) \quad=\quad$ The variance of the return on the Portfolio
$\operatorname{Var}\left(R_{i}\right)=$ Variance of return on security i
$\operatorname{Cov}\left(R_{i} R_{j}\right)=$ The covariance between the returns of securities i and j
$W_{i}, W_{j} \quad=\quad$ The percentage of investable funds invested in securities i and j.
iv. Correlation Co-efficient, $\rho_{i j}=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}}$

Where,
$\sigma_{i j} \quad=\quad$ Covariance between securities i and j
$\sigma_{\mathrm{i}}=$ Standard deviation of security i
$\sigma_{\mathrm{j}}=$ Standard deviation of security j
v. Systematic risk of security $i=\beta_{\mathrm{im}}^{2} \sigma_{\mathrm{m}}^{2}$

Where,
$\beta_{\mathrm{im}}^{2}=$ The beta of the security i
$\sigma_{\mathrm{m}}^{2}=$ The variance of the market portfolio
vi. Systematic risk of the portfolio $=\left(\sum_{i=1}^{n} X_{i} \beta_{i m}\right)^{2} \sigma_{m}^{2}$

Where,
$\mathrm{X}_{\mathrm{i}}=$ Proportion of the total portfolio invested in security i
$\mathrm{n}=$ Total number of stocks
$\beta_{\mathrm{im}}^{2}=\quad$ The beta of the security i
$\sigma_{\mathrm{m}}^{2}=$ The variance of the market portfolio
vii. Unsystematic risk of portfolio $=\sum_{i=1}^{n} X_{i}^{2} \sigma_{e i}^{2}$

Where,
$\mathrm{X}_{\mathrm{i}}=$ Proportion of the total portfolio invested in security i
$\mathrm{n} \quad=$ Total number of stocks
$\sigma_{\text {ei }}^{2}=$ Variance in security not caused by its relationship to the index
viii. Total portfolio variance (risk), $\sigma_{p}^{2}=\left(\sum_{i=1}^{n} X_{i} \beta_{i m}\right)^{2} \sigma_{m}^{2}+\left(\sum_{i=1}^{n} X_{i}^{2} \sigma_{e i}^{2}\right)$

Where,
$\sigma_{p}^{2}=\quad$ Variance of portfolio return
$\sigma_{\mathrm{m}}^{2}=\quad$ Expected variance of index
$\sigma_{\text {ei }}^{2}=\quad$ Variance in security not caused by its relationship to the index
$X_{i}=$ Proportion of the total portfolio invested in security i
$\mathrm{n}=$ Total number of stocks.

6. Portfolio Performance

i. Jensen's differential return $\left(\alpha_{i}\right)=R_{i}-\left[R_{f}+\beta_{i}\left(R_{m}-R_{f}\right)\right.$

Where,
$\mathrm{R}_{\mathrm{i}} \quad=\quad$ Average realized return on portfolio P
$\mathrm{R}_{\mathrm{f}}=$ Risk-free return for period t
$\mathrm{R}_{\mathrm{m}}=\quad$ Average return of the market portfolio for period t
$\beta_{\mathrm{i}}=\mathrm{A}$ measure of systematic or market risk.(slope of the regression equation)
$\alpha_{i}=$ Intercept that measures the forecasting ability of the portfolio manager
ii. Treynor's ratio $=\frac{\left(\mathrm{R}_{\mathrm{P}}-\mathrm{R}_{\mathrm{f}}\right)}{\beta_{\mathrm{p}}}$

Where,
$\mathrm{R}_{\mathrm{P}}=\quad$ Return on the portfolio
$R_{f}=$ Risk-free rate of return
$\beta_{\mathrm{p}}=$ Beta of the portfolio
iii. \quad Sharpe's ratio $=\frac{R_{P}-R_{f}}{\sigma_{P}}$

Where,
$\mathrm{R}_{\mathrm{P}}=\quad$ Return on the portfolio
$\mathrm{R}_{\mathrm{f}}=\quad$ Risk-free rate of return
$\sigma_{\mathrm{P}}=$ Standard deviation of return on the portfolio
iv. Return from total selectivity
$=$ Return from net selectivity + Return for extra diversifiable risk
(or)
Return from net selectivity
$=$ Return from total selectivity - Return for extra diversifiable risk
v. Return from net selectivity $=R_{P}-\left[R_{f}+\left(R_{m}-R_{f}\right) \frac{\sigma_{P}}{\sigma_{m}}\right]$

Where,
$\mathrm{R}_{\mathrm{p}} \quad=\quad$ Return on portfolio
$\sigma_{p} \quad=\quad$ Standard deviation of returns of portfolio p
$\sigma_{\mathrm{m}}=$ Standard deviation of market returns
$\mathrm{R}_{\mathrm{f}} \quad=\quad$ Risk-free rate
$\mathrm{R}_{\mathrm{m}}=\quad$ Return on market portfolio.

7. Bond Portfolio Management

i. Number of futures contracts, $X=\frac{\left(D_{T}-D_{I}\right) P_{I}}{D_{F} P_{F}}$

Where,
$\mathrm{X}=$ Approximate number of futures contracts
$\mathrm{D}_{\mathrm{T}}=$ Target effective duration for the portfolio
$\mathrm{D}_{\mathrm{I}} \quad=\quad$ Initial effective duration for the portfolio
$D_{\mathrm{F}}=\quad$ Effective duration for the futures contract
$P_{I}=$ Initial market value of the portfolio
$\mathrm{P}_{\mathrm{F}}=$ Market value of the futures contract.

IX. Project Management

1. Appraisal Criteria

i. Cash flow as per long-term funds point of view
$=$ PAT + Depreciation + Interest on long-term $(1-t)$
ii. Cash flow as per equity funds point of view
$=$ PAT + Depreciation - Repayment of long-term borrowings - Repayment of short-term bank borrowings
iii. Modified Net Present Value
$N P V_{n}=\frac{T V}{(1+k)^{n}}-I$
Where,
$N P V_{n}=\quad$ Modified net present value
$\mathrm{TV}=$ Terminal value
$\mathrm{k}=$ Cost of capital
I = Investment outlay
$\mathrm{TV}=\quad \sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{CF}_{\mathrm{t}}\left(1+\mathrm{r}^{\left.\mathrm{r}^{\mathrm{n}}\right)^{\mathrm{n}-\mathrm{t}}, ~}\right.$
$\mathrm{n} \quad=\quad$ Project life
Where,
$\mathrm{CF}_{\mathrm{t}}=$ Cash in flow at the end of the year t
$\mathrm{r}^{\prime}=$ Reinvestment rate applicable to the cash inflows of the project
iv. Modified Internal Rate of Return
$\mathrm{r}^{*}=\left[\frac{\mathrm{TV}}{\mathrm{I}}\right]^{1 / \mathrm{n}}-\mathrm{I}$
Where,

I	$=$	Initial investment
r^{*}	$=$	Modified IRR
n	$=$	Project life
TV	$=$	Terminal value
$\mathrm{I}\left(1+\mathrm{r}^{*}\right)^{\mathrm{n}}$	$=$	TV.

2. Risk Analysis in Capital Investment Decisions

i. Expected NPV and Standard Deviation of NPV
a. In perfectly correlated cash flows

Expected NPV $(\overline{\mathrm{NPV}})=\sum_{\mathrm{t}=1}^{\mathrm{n}} \overline{\mathrm{A}}_{\mathrm{t}} /(1+\mathrm{i})^{\mathrm{t}}-\mathrm{I}$
S.D. of the $\mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \sigma_{\mathrm{t}} /(1+\mathrm{i})^{\mathrm{t}}$
b. In uncorrelated cash flows

$$
\text { Expected NPV }(\overline{\mathrm{NPV}})=\sum_{\mathrm{t}=1}^{\mathrm{n}} \overline{\mathrm{~A}}_{\mathrm{t}} /(1+\mathrm{i})^{\mathrm{t}}-\mathrm{I}
$$

$$
\begin{aligned}
& \text { S.D. of the NPV }=\left[\sum_{\mathrm{t}=1}^{\mathrm{n}} \sigma_{\mathrm{t}}^{2} /(1+\mathrm{i})^{2 \mathrm{t}}\right]^{1 / 2} \\
& \text { Where, } \\
& \overline{\mathrm{A}}_{\mathrm{t}}==\text { The expected cash flows for a time period } \mathrm{t} \\
& \mathrm{i}=\mathrm{The} \text { risk-free discount rate } \\
& \mathrm{n}=\mathrm{The} \mathrm{life} \mathrm{of} \mathrm{the} \mathrm{project} \\
& \overline{\mathrm{NPV}}=\text { The expected net present value } \\
& \sigma_{\mathrm{t}}==\text { Standard deviation of the cash flows for a time period } \mathrm{t} \\
& \mathrm{I}=\text { Initial investment. }
\end{aligned}
$$

3. Application of Portfolio Theories in Investment Risk Appraisal
i. \quad Asset beta, $\beta_{\mathrm{A}}=\beta_{\mathrm{E}}\left(\frac{\mathrm{E}}{\mathrm{E}+\mathrm{D}}\right)+\beta_{\mathrm{D}}\left(\frac{\mathrm{D}}{\mathrm{E}+\mathrm{D}}\right)$

Where,
$\beta_{\mathrm{A}}=$ Asset beta
$\beta_{\mathrm{E}}=$ Equity beta
$\beta_{\mathrm{D}}=$ Debt beta.
4. Social Cost Benefit Analysis
i. Effective Rate of Protection
$=\frac{\text { Value added at domestic prices }- \text { Value added at world prices }}{\text { Value added at world prices }}$
ii. Domestic resource cost $=\frac{\text { Value added at domestic prices } \times \text { Exchange rate }}{\text { Value added at world prices }}$
5. Options in Investment Appraisal
i. Transaction price or cash price of the bond,

P $=$ Quoted price + Accrued interest
Invoice price $=($ Futures settlement price \times Conversion factor $)+$ Accrued interest
ii. $\quad \mathrm{HR}=-\left(\frac{\text { Cash market principal }}{\text { Futures market principal }}\right) \times$ Conversion factor
iii. $\quad \mathrm{HR}=\left(\frac{\text { Cash flow to be hedged }}{\text { Value of futures contract }} \times\right.$ Conversion factor $\left.\times \frac{\text { Portfolio duration }}{\text { CTD bond duration }}\right)$
iv. Binomial Pricing Model

Call price, $\mathrm{C}=\frac{\mathrm{C}_{\mathrm{u}} \mathrm{p}+\mathrm{C}_{\mathrm{d}}(1-\mathrm{p})}{\mathrm{R}}$
$\mathrm{p}=\frac{\mathrm{R}-\mathrm{d}}{\mathrm{u}-\mathrm{d}}$
Where,
$\mathrm{u} \quad=\quad 1+$ percentage increase in stock price from time 0 to time t
$\mathrm{d}=1+$ percentage decrease in stock price from time 0 to time t
$\mathrm{C}=$ The call price
$\mathrm{C}_{\mathrm{u}} \quad=\quad$ The value of the call if the stock price increases
$\mathrm{C}_{\mathrm{d}} \quad=\quad$ The value of call if the stock price decreases
$\mathrm{R}=1+$ risk-free rate of return (r)
$\mathrm{p}=$ Probability of price increase
v. Black-Scholes option pricing model:
$\mathrm{C}=\mathrm{S}_{0} \mathrm{~N}\left(\mathrm{~d}_{1}\right)-\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \mathrm{N}\left(\mathrm{d}_{2}\right)$
$\mathrm{P}=\mathrm{Xe}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \mathrm{N}\left(-\mathrm{d}_{2}\right)-\mathrm{S}_{0} \mathrm{~N}\left(-\mathrm{d}_{1}\right)$
Where,

$$
\begin{aligned}
& \mathrm{d}_{1}=\frac{\operatorname{In}\left(\mathrm{S}_{0} / \mathrm{X}\right)+\left(\mathrm{r}+\frac{\sigma^{2}}{2}\right)(\mathrm{T}-\mathrm{t})}{\sigma \sqrt{(\mathrm{T}-\mathrm{t})}} \\
& \mathrm{d}_{2}=\frac{\operatorname{In}\left(\mathrm{S}_{0} / \mathrm{X}\right)+\left(\mathrm{r}-\frac{\sigma^{2}}{2}\right)(\mathrm{T}-\mathrm{t})}{\sigma \sqrt{(\mathrm{T}-\mathrm{t})}}
\end{aligned}
$$

Or,
$\mathrm{d}_{2}=\mathrm{d}_{1}-\sigma \sqrt{\mathrm{T}-\mathrm{t}}$
C $\quad=$ The call option price
$\mathrm{P}=$ The put option price
$\mathrm{S} \quad=\quad$ The spot price of the underlying asset
$\mathrm{X}=$ The strike price of the option
$\mathrm{r}=$ The risk-free rate
$(\mathrm{T}-\mathrm{t})=\quad$ The time to expiration expressed in years
$\sigma=$ The annualized standard deviation of returns on the underlying asset, i.e., the volatility measure
$\mathrm{N}(\mathrm{d})=$ Cumulative standard normal distribution
e $=$ Exponential function
In $=$ Natural logarithm.

6. Project Scheduling

i. Expected time $\left(\mathrm{t}_{\mathrm{e}}\right)=\frac{\mathrm{t}_{\mathrm{o}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{p}}}{6}$
ii. $\quad \operatorname{Variance}(V)=\left[\frac{t_{p}-t_{o}}{6}\right]^{2}$

Where,
$\mathrm{t}_{\mathrm{o}}=$ Optimistic estimate of time
$\mathrm{t}_{\mathrm{m}} \quad=\quad$ Most likely time
$t_{p} \quad=\quad$ Pessimistic estimate of time.

7. Project Monitoring and Control

i. Cost Performance Index $=\frac{\mathrm{BCWP}}{\mathrm{ACWP}}$
ii. Schedule Performance Index $=\frac{\text { BCWP }}{\text { BCWS }}$
iii. Estimated Cost Performance Index $=\frac{\mathrm{BCTW}}{\mathrm{ACWP}+\mathrm{ACC}}$

Where,

BCWP	$=\quad$ Budgeted cost of work performed
ACWP	$=$ Actual cost of work performed
BCWS	$=\quad$ Budgeted cost of work scheduled
BCTW	$=$ Budgeted cost for total work
ACC	$=\quad$ Additional cost for completion.

X. Quantitative Methods

1. Basics of Mathematics

i. Progressions

a. The nth term in an A.P.
$T_{n}=a+(n-1) d$
b. Sum of all the terms in an A.P.
$S=\frac{n}{2}\{2 a+(n-1) d\}$
Where,
$\mathrm{a}=$ First term
$\mathrm{n} \quad=\quad$ No. of terms
$\mathrm{d}=$ Common difference
c. The nth term in a G.P.

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

d. Sum of numbers in a G.P.
$S=\frac{a\left(r^{n}-1\right)}{(r-1)} \quad r \neq 1$
e. Sum of an Infinite G. P.
$S=\frac{a}{1-r}$
Where,
$\mathrm{a}=$ First term
$\mathrm{r}=$ Common ratio
ii. Permutations and Combinations
a. Permutations

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

Where,

$$
n!=n(n-1)(n-2)(n-3) \ldots . .3 .2 .1
$$

b. Combinations

$$
{ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}=\frac{n!}{(n-r)!r!}
$$

iii. Logarithms
a. $\quad \log _{\mathrm{a}} \mathrm{MN}=\quad \log _{\mathrm{a}} \mathrm{M}+\log _{\mathrm{a}} \mathrm{N}$
b. $\quad \log _{a}(M / N)=\quad \log _{a} M-\log _{a} N$
c. $\quad \log _{\mathrm{a}}\left(\mathrm{M}^{\mathrm{p}}\right)=\quad$ p. $\log _{\mathrm{a}} \mathrm{M}$
d. $\quad \log _{b} \mathrm{a} \times \log _{\mathrm{a}} \mathrm{b}=1$

2. Calculus

i. Rules of Differentiation
a. If $f(x)=x^{n}$
then $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
b. If $f(x)=g(x) h(x)$
then $f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$
c. If $f(x)=\frac{g(x)}{h(x)} \quad$ where $h(x) \neq 0$
then $f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{[h(x)]^{2}}$
d. If $f(x)=c . g(x)$ where ' c ' is a constant,
then $f^{\prime}(x)=\mathrm{cg}^{\prime}(\mathrm{x})$
e. If $f(x)=g(x)+h(x)$
then $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{h}^{\prime}(\mathrm{x})$
f. If $\mathrm{f}(\mathrm{x})=\ln \mathrm{x}$, then $\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}$

If $f(x)=e^{g(x)}$
then $\quad f^{\prime}(x)=g^{\prime}(x) . e^{g(x)}$
g. If $f(x)=\ln g(x)$,
then $f^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)}$
h. $\quad f^{n}(x)=\frac{d^{n} f(x)}{d x^{n}}$
ii. Partial Derivatives
a. For a function, $\mathrm{f}=\mathrm{g}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{h}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=g(x, y) \frac{\partial h}{\partial x}+h(x, y) \frac{\partial g}{\partial x} \\
& \frac{\partial f}{\partial y}=g(x, y) \frac{\partial h}{\partial y}+h(x, y) \frac{\partial g}{\partial y}
\end{aligned}
$$

b. For a function, $f=\frac{g(x, y)}{h(x, y)}$ and $h(x, y) \neq 0$,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{h(x, y)[\partial g / \partial x]-g(x, y)[\partial h / \partial x]}{[h(x, y)]^{2}} \\
& \frac{\partial f}{\partial y}=\frac{h(x, y)[\partial g / \partial y]-g(x, y)[\partial h / \partial y]}{[h(x, y)]^{2}}
\end{aligned}
$$

c. For a function, $\mathrm{f}=[\mathrm{g}(\mathrm{x}, \mathrm{y})]^{\mathrm{n}}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=n[g(x, y)]^{n-1} \frac{\partial g}{\partial x} \\
& \frac{\partial f}{\partial y}=n[g(x, y)]^{n-1} \frac{\partial g}{\partial y}
\end{aligned}
$$

iii. Integration
a. If ' K ' and ' c ' are constants, then

$$
\int K d x=K x+c
$$

b. $\quad \int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
c. $\quad \int \mathrm{x}^{-1} \mathrm{dx}=\ln \mathrm{x}+\mathrm{c}, \mathrm{x}>0$
d. $\int \mathrm{a}^{\mathrm{Kx}} \cdot \mathrm{dx}=\frac{\mathrm{a}^{\mathrm{Kx}}}{\mathrm{K} \ln \mathrm{a}}+\mathrm{c}$, where ' a ' and ' K ' are constants
e. $\quad \int e^{K x} \cdot d x=\frac{e^{K x}}{K}+c$
f. $\quad \int K f(x) d x=K \int f(x) d x$
g $\quad \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
h. $\quad \int[-f(x) d x]=-\int[f(x) d x]$
iv. Definite Integral
a. $\quad \int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)$

Where, $F(x)$ is the indefinite integral of $f(x)$
b. $\quad \int_{c}^{d} f(x) d x=-\int_{d}^{c} f(x) d x$
c. $\quad \int_{\mathrm{k}}^{\mathrm{k}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{k})-\mathrm{F}(\mathrm{k})=0$
d. $\quad \int_{p}^{r} f(x) d x=\int_{p}^{q} f(x) d x+\int_{q}^{r} f(x) d x$

Where, $\quad \mathrm{p} \leq \mathrm{q} \leq \mathrm{r}$
e. $\quad \int_{c}^{d} f(x) d x \pm \int_{c}^{d} g(x) d x=\int_{c}^{d}[f(x) \pm g(x)] d x$
f. $\quad \int_{q}^{r} c f(x) d x=c \int_{q}^{r} f(x) d x$

Where, c is a constant.

3. Interpolation and Extrapolation

i. Linear Approximation Method of Interpolation

Interpolated figure
a. For ascending series:
$=$ Base value $+\frac{\text { Upper limit }- \text { Lower limit }}{\left(t_{s}-t_{p}\right)} \times\left(t_{i}-t_{p}\right)$
b. For descending series:
$=$ Base value $-\frac{\text { Lower limit }- \text { Upper limit }}{\left(t_{s}-t_{p}\right)} \times\left(t_{i}-t_{p}\right)$
Where,
Base value is the value of the immediately preceding year.
$\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{p}}\right)$: time interval between the immediately preceding year and the year for which the value is to be interpolated.
$\left(t_{s}-t_{p}\right)$: time interval between the two known values.

4. Central Tendency and Dispersion

i. Arithmetic Mean
$\bar{x}=\left(x_{1}+x_{2}+\ldots \ldots .+x_{n}\right) / n=\frac{\left(\sum_{i=1}^{n} x_{i}\right)}{n}$
Where,
$\mathrm{n}=\quad$ No. of observations
ii. Mean for discrete series or ungrouped data

$$
\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}}
$$

Where,
$\mathrm{f}=$ Frequency
iii. Mean for continuous series or grouped data, $\overline{\mathrm{x}}=\frac{\sum \mathrm{fm}}{\mathrm{N}}$

Where,

m	$=$ Midpoint of class
	$=\frac{\text { Lower limit+Lower limit of next class }}{2}$
f	$=\quad$ Frequency of each class
N	$=\sum \mathrm{f}=$ Total frequency

iv. Weighted arithmetic mean

$$
=\overline{\mathrm{x}}_{\mathrm{W}}=\frac{\sum \mathrm{WX}}{\sum \mathrm{~W}}
$$

v. Median
a. For ungrouped data,

If the total of the frequencies is odd, say n
Median $=$ Value of $\frac{(\mathrm{n}+1)}{2}^{\text {th }}$ item
If total of the frequencies is even, say 2 n
Median $=$ Arithmetic Mean of nth and $(\mathrm{n}+1)$ th items
b. For grouped data,

Median $=\left[\frac{(\mathrm{N}+1) / 2-(\mathrm{F}+1)}{\mathrm{f}_{\mathrm{m}}}\right] \mathrm{w}+\mathrm{L}_{\mathrm{m}}$
Where,
$\mathrm{L}_{\mathrm{m}} \quad=\quad$ Lower limit of the median class
$\mathrm{f}_{\mathrm{m}} \quad=\quad$ Frequency of the median class
$\mathrm{F} \quad=\quad$ Cumulative frequency up to the lower limit of the median class
$\mathrm{w} \quad=\quad$ Width of the class interval
$\mathrm{N} \quad=\quad$ Total frequency
vi. Mode (For a grouped data)

Mode $=L_{\text {mo }}+\frac{f_{m o}-f_{1}}{2 f_{m o}-f_{1}-f_{2}} \times w$
Where,
$\mathrm{L}_{\mathrm{mo}}=$ Lower limit of the modal class which is the class having the maximum frequency
$f_{1}, f_{2}=\quad$ Frequencies of the classes preceding and succeeding the modal class respectively
$\mathrm{f}_{\mathrm{mo}}=\quad$ Frequency of modal class
$\mathrm{w}=$ Class interval
vii. Empirical mode $=3$ Median -2 Mean
viii. Geometric mean, $G=\left(X_{1} \times X_{2} \times X_{3} \ldots X_{n}\right)^{1 / n}$
ix. Harmonic mean, $H M=\frac{N}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots .+\frac{1}{x_{n}}}$
x. Weighted Harmonic mean, $W H M=\frac{\sum_{w}}{\sum(w / x)}$
xi. Mean Absolute Deviation $=\frac{\sum|x-\bar{x}|}{n}$

$$
\begin{aligned}
& \text { Here, }|\mathrm{x}-\overline{\mathrm{x}}|=\mathrm{x}-\overline{\mathrm{x}} \text { if } \mathrm{x} \geq \overline{\mathrm{x}} \\
& \text { and }|\mathrm{x}-\overline{\mathrm{x}}|=\overline{\mathrm{x}}-\mathrm{x} \text { if } \mathrm{x} \leq \overline{\mathrm{x}}
\end{aligned}
$$

xii. Quartile Deviation Q.D. $=\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}$

Where,
$\mathrm{Q}_{1}=\quad$ First quartile $=$ Size of $\frac{\mathrm{N}}{4}$ th observation
$\mathrm{Q}_{3}=\quad$ Third quartile $=$ Size of $\frac{3 \mathrm{~N}}{4}$ th observation
$\mathrm{N}=\quad$ Number of observations
xiii. Population standard deviation
$\sigma=\sqrt{\frac{\sum(\mathrm{x}-\mu)^{2}}{\mathrm{~N}}}$
Where,
x denotes each observation
$\mu=$ Arithmetic mean of population
$\mathrm{N} \quad=\quad$ No. of observations
For grouped data,
$\sigma=\sqrt{\frac{\sum \mathrm{f}(\mathrm{x}-\mu)^{2}}{\sum \mathrm{f}}}$
Where,
$\mathrm{f} \quad=\quad$ Frequency
$\mu=$ Arithmetic mean of population
xiv. Sample standard deviation
$S=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
Where,
$\overline{\mathrm{x}} \quad=\quad$ Sample mean
xv. Combined standard deviation of two groups
$\sigma_{12}=\sqrt{\frac{\mathrm{N}_{1} \sigma_{1}^{2}+\mathrm{N}_{2} \sigma_{2}^{2}+\mathrm{N}_{1} \mathrm{~d}_{1}^{2}+\mathrm{N}_{2} \mathrm{~d}_{2}^{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}}$
Where,
$\mu_{1} \quad=\quad$ Mean of first group
$\mu_{2}=\quad$ Mean of second group
$\sigma_{1}=$ Standard deviation of first group
$\sigma_{2}=$ Standard deviation of second group
$\mathrm{N}_{1}=$ Number of observations in the first group
$\mathrm{N}_{2}=$ Number of observations in the second group
$\mathrm{d}_{1} \quad=\quad \mu_{1}-\mu$
$\mathrm{d}_{2}=\mu_{2}-\mu$
$\mu=\frac{\left(\mathrm{N}_{1} \mu_{1}+\mathrm{N}_{2} \mu_{2}\right)}{\mathrm{N}_{1}+\mathrm{N}_{2}}$
xvi. Standard Deviation of a Discrete Random Variable $\sigma=\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{1}\left(\mathrm{k}_{\mathrm{i}}-\overline{\mathrm{k}}\right)^{2}\right]^{1 / 2}$

Where,
$P_{i}=$ Probability associated with the occurrence of the ith value
$\mathrm{k}_{\mathrm{i}}=\quad=\quad$ ith possible value
$\mathrm{k}=\quad$ Expected rate of return i.e. mean
$\mathrm{n} \quad=\quad$ Number of possible outcomes
xvii. \quad Coefficient of variation $=\frac{\text { Standard Deviation }}{\text { Mean }} \times 100$
5. Probability
i. Marginal or unconditional probability of an event A
$\mathrm{P}(\mathrm{A})=\frac{\text { Number of possible outcomes favoring A }}{\text { Total number of possible outcomes }}$
ii. If A and B are mutually exclusive events,
then $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
iii. If A and B are not mutually exclusive,
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
iv. If A and B are independent events,
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) . \mathrm{P}(\mathrm{B})$
v. Conditional probability of event A, given that B has occurred, in case of A and B being independent events is $\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A})$
vi. If A and B are dependent then

$\mathrm{P}(\mathrm{A}$ and B$)$	$=$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} / \mathrm{A})$	
or $\mathrm{P}(\mathrm{B}$ and A$)$	$=$
$\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} / \mathrm{B})$	

vii. Bayes' Theorem:
$\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} / \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{\mathrm{i}}\right)}{\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{\mathrm{k}}\right)}$

6. Probability Distribution and Decision Theory

i. Expected Value
$\mathrm{E}[\mathrm{x}]=\sum \mathrm{xP}(\mathrm{x})$,
Where,
$\mathrm{x}=$ Random variable
$\mathrm{P}(\mathrm{x})=$ Probability of x
ii. Covariance
a. For a population of paired ungrouped data points $\{\mathrm{x}, \mathrm{y}\}$
$\operatorname{Cov}_{\mathrm{xy}}=\frac{\sum\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)}{\mathrm{N}}$
Where,
$\mu_{\mathrm{x}}=$ The arithmetic mean of $\{\mathrm{x}\}$
$\mu_{\mathrm{y}}=\quad$ The arithmetic mean of $\{\mathrm{y}\}$
$\mathrm{N}=$ The number of observations in each population
For a paired sample $\{x, y\}$,
$\operatorname{Cov}_{\mathrm{xy}}=\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{y}-\overline{\mathrm{y}})}{\mathrm{n}-1}$
Where,
$\bar{x}=\quad$ The arithmetic mean of sample $\{x\}$
$\bar{y}=\quad$ The arithmetic mean of sample $\{y\}$
b. For grouped data of paired population
$\operatorname{Cov}_{x y}=\frac{\sum f\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sum f}$
Where,
$\mathrm{f} \quad=\quad$ The frequency of the corresponding (x, y) values.
Given a probability distribution of paired data $\{\mathrm{x}, \mathrm{y}\}$,
$\operatorname{Cov}_{x y}=\sum[\mathrm{x}-\mathrm{E}(\mathrm{x})][\mathrm{y}-\mathrm{E}(\mathrm{y})] \mathrm{P}(\mathrm{x}, \mathrm{y})$
Where,
$P(x, y)=\quad$ The joint probability of x and y
$E(x)=$ The expected value of x
$\mathrm{E}(\mathrm{y})=$ The expected value of y .
iii. $E\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)$
iv. $V\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1}^{2} V\left(X_{1}\right)+a_{2}^{2} V\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)$

Where, V denotes variance
v. Binomial distribution,
$\mathrm{f}(\mathrm{x})=\binom{\mathrm{n}}{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{(\mathrm{n}-\mathrm{x})}$
Where,
$\mathrm{f}(\mathrm{x}) \quad=\quad$ The probability of x successes in n trials
$\mathrm{n}=$ The number of trials
$\binom{n}{x}=\frac{n!}{x!(n-x)!}$
$\mathrm{p} \quad=$ The probability of a success on any one trial
$(1-\mathrm{p})=\mathrm{q}=$ The probability of a failure on any one trial
$\mathrm{E}(\mathrm{x})=\mathrm{np}$
$\mathrm{V}(\mathrm{x})=\mathrm{npq}$
vi. Poisson Distribution
$f(x)=\frac{\lambda^{x} \times e^{-\lambda}}{x!}$
Where,
$f(x)=$ Probability of x occurrences in an interval
$\lambda=$ The mean number of occurrences in an interval
$\mathrm{e} \quad=$ The base of natural logarithm system
vii. Hypergeometric distribution
$f(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$ for $0 \leq x \leq r$
Where,
$f(x)=$ Probability of x successes in n trials
$\mathrm{n} \quad=\quad$ Number of trials
$\mathrm{N}=\quad$ Number of elements in the population
$\mathrm{r}=$ Number of elements in the population labeled success
$\mathrm{E}(\mathrm{x})=\frac{\mathrm{nr}}{\mathrm{N}}$
$\mathrm{V}(\mathrm{x})=\frac{\operatorname{nr}(\mathrm{N}-\mathrm{r})(\mathrm{N}-\mathrm{n})}{\mathrm{N}^{2}(\mathrm{~N}-1)}$
viii. Standard Normal Variable,

$$
z=\frac{x-\mu}{\sigma}
$$

Where,

x	$=$ Random variable
μ	$=$ Mean of the distribution of the random variable
σ	$=$ Standard deviation

ix. In a t-distribution, $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}$

Where,
$\overline{\mathrm{x}} \quad=$ The sample mean
$\mu \quad=\quad$ The population mean
$\mathrm{S}=$ Sample standard deviation
$\mathrm{n} \quad=\quad$ The sample size.
x. If MP $=$ Marginal profit

ML $=$ Marginal loss
' P ' = The probability of generating the additional profit by increasing our activity level by one unit, then
Expected $(\mathrm{MP})=\mathrm{P} \times \mathrm{MP}$
Expected $(\mathrm{ML})=(1-\mathrm{P}) \times \mathrm{ML}$
$\mathrm{P}^{*}=\frac{\mathrm{ML}}{\mathrm{ML}+\mathrm{MP}}$
P^{*} represents the minimum required probability of selling at least one additional unit to justify the stocking of that additional unit.

7. Statistical Inferences

i. Standard Error for
a. \quad Sample mean $(\overline{\mathrm{x}}), \sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{\mathrm{n}}}$
b. Sample proportion $(\overline{\mathrm{p}}), \sigma_{\overline{\mathrm{p}}}=\sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}$

Where, $\mathrm{q}=1-\mathrm{p}$
c. Difference of two sample means $\overline{\mathrm{x}}_{1}$ and $\overline{\mathrm{x}}_{2}$ i.e.
$\sigma_{\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}}$
Where,
$\overline{\mathrm{x}}_{1}$ and $\overline{\mathrm{x}}_{2}$ are the means of two random samples of sizes and drawn from two populations with standard deviations σ_{1} and σ_{2} respectively.
d. Difference of two proportions:
$\sigma_{\overline{\mathrm{P}}_{1}-\overline{\mathrm{P}}_{2}}=\sqrt{\frac{\hat{\mathrm{p}} \hat{\mathrm{q}}}{\mathrm{n}_{1}}+\frac{\hat{\mathrm{p}} \hat{\mathrm{q}}}{\mathrm{n}_{2}}}$
Where,
$\overline{\mathrm{p}}_{1}$ and $\overline{\mathrm{p}}_{2}$ are the proportions of two random samples of sizes n_{1} and n_{2} drawn from two populations and $\hat{\mathrm{p}}=\frac{\mathrm{n}_{1} \overline{\mathrm{p}}_{1}+\mathrm{n}_{2} \overline{\mathrm{p}}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$ and $\hat{\mathrm{q}}=1-\hat{\mathrm{p}}$

Where,
$\hat{\mathrm{p}}$ is the estimate of the overall proportion of success in the combined populations using combined proportions for both the samples.
e. For a finite population of size N , when a sample of size n is drawn without replacement,

$$
\sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{\mathrm{n}}} \sqrt{\frac{\mathrm{~N}-\mathrm{n}}{\mathrm{~N}-1}}
$$

f. Sample standard deviation,

$$
\sigma_{\mathrm{s}}=\sqrt{\frac{\sigma^{2}}{2 \mathrm{n}}}
$$

8. Simple Linear Regression and Correlation

i. Karl Pearson's correlation coefficient,
$\mathrm{r}=\frac{\operatorname{Cov}(\mathrm{X}, \mathrm{Y})}{\mathrm{s}_{\mathrm{x}} \mathrm{s}_{\mathrm{y}}}$
Or
$\mathrm{r}=\frac{\sum(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{Y}-\overline{\mathrm{Y}})}{\sqrt{\sum(\mathrm{X}-\overline{\mathrm{X}})^{2} \sum(\mathrm{Y}-\overline{\mathrm{Y}})^{2}}}$
ii. Rank correlation coefficient,

Where, $D_{i}=$ The difference in the ranks of the ith individual
iii. If the regression line, $\hat{\mathrm{Y}}_{\mathrm{X}}=\mathrm{a}+\mathrm{bX}$
$\mathrm{b}=\frac{\mathrm{n} \sum \mathrm{XY}-\left(\sum \mathrm{X}\right)\left(\sum \mathrm{Y}\right)}{\mathrm{n} \sum \mathrm{X}^{2}-\left(\sum \mathrm{X}\right)^{2}}$
$a=\bar{Y}-b \bar{X}$
iv. Standard error of the estimate for a simple regression equation
$S_{e}=\sqrt{\frac{\sum(Y-\hat{Y})^{2}}{n-2}}=\sqrt{\frac{\Sigma Y^{2}-a \Sigma Y-b \Sigma X Y}{n-2}}$
Where,
Y $\quad=\quad$ Values of dependent variable
$\hat{\mathrm{Y}}=$ Estimated values from the estimating equation that correspond to each Y value
$\mathrm{n} \quad=\quad$ Number of data points used to fit the regression line
v. Total Sum of Squares, $\quad \mathrm{TSS}=\Sigma(\mathrm{Y}-\overline{\mathrm{Y}})^{2}$

Regression Sum of Squares, RSS $=\Sigma(\hat{\mathrm{Y}}-\overline{\mathrm{Y}})^{2}$
Error Sum of Squares, \quad ESS $=\Sigma(\mathrm{Y}-\hat{\mathrm{Y}})^{2}$
vi. Coefficient of Determination, $\mathrm{R}^{2}=\frac{a \Sigma \mathrm{Y}+\mathrm{b} \Sigma X Y-n \overline{\mathrm{Y}}^{2}}{\Sigma \mathrm{Y}^{2}-\mathrm{n} \overline{\mathrm{Y}}^{2}}$
vii. $\quad S_{\mathrm{b}}=\frac{\mathrm{S}_{\mathrm{e}}}{\sqrt{\sum \mathrm{x}^{2}-\mathrm{n} \overline{\mathrm{X}}^{2}}}$

Where, $\mathrm{S}_{\mathrm{b}}=$ Estimate of $\mathrm{V}(\mathrm{b})$.

9. Multiple Regression

i. Multiple Regression Equation

$$
\hat{Y}=A+B_{1} X_{1}+B_{2} X_{2}+B_{3} X_{3}+\ldots . .+B_{n} X_{k}
$$

ii. Standard error of estimate for a multiple regression equation

$$
\begin{aligned}
\mathrm{S}_{\mathrm{e}} & =\sqrt{\frac{\Sigma(\mathrm{Y}-\hat{\mathrm{Y}})^{2}}{(\mathrm{n}-\mathrm{k}-1)}} \\
& =\sqrt{\frac{\Sigma \mathrm{Y}^{2}-\mathrm{a} \Sigma \mathrm{Y}-\mathrm{b}_{1} \Sigma \mathrm{X}_{1} \mathrm{Y}-\mathrm{b}_{2} \Sigma \mathrm{X}_{2} \mathrm{Y}}{\mathrm{n}-\mathrm{k}-1}}
\end{aligned}
$$

Where,
$\mathrm{Y} \quad=\quad$ The sample value of the dependent variable
$=\quad$ The corresponding estimate obtained by using the regression equation
$\mathrm{n}=\quad$ number of observations
$\mathrm{k} \quad=\quad$ number of independent variables
iii. Coefficient of multiple correlation between Y and both X_{1} and X_{2} is given by
$\mathrm{R}_{\mathrm{Y} . \mathrm{X}_{1} \mathrm{X}_{2}}=1-\sqrt{\frac{\left(\Sigma \mathrm{Y}^{2}-\mathrm{a} \Sigma \mathrm{Y}-\mathrm{b}_{1} \Sigma \mathrm{X}_{1} \mathrm{Y}-\mathrm{b}_{2} \Sigma \mathrm{X}_{2} \mathrm{Y}\right)}{\left(\Sigma \mathrm{Y}^{2}-(\Sigma \mathrm{Y})^{2} / \mathrm{n}\right)}}$
$R_{1.23}=\sqrt{\frac{r_{12}^{2}+r_{13}^{2}-2 r_{12} r_{23} r_{13}}{1-r_{23}^{2}}}$
iv. In the equation, $Y=a+b_{1} X_{1}+b_{2} X_{2}$,
the partial correlation coefficient is given by R_{123}
Where,
$R_{123}=\frac{r_{12}-r_{13} \cdot r_{23}}{\sqrt{\left(1-r_{13}{ }^{2}\right)\left(1-r_{23}{ }^{2}\right)}}$ is the partial correlation coefficient between Y and X_{1},
when X_{2} is kept constant.
Where,
$\mathrm{r}_{12}=$ Correlation coefficient between Y and X_{1}
$\mathrm{r}_{23}=$ Correlation coefficient between X_{1} and X_{2}
$\mathrm{r}_{13}=$ Correlation coefficient between Y and X_{2}
R_{123} will take values between 0 and 1, i.e., $0 \leq \mathrm{R}_{123} \leq 1$.

10. Time Series Analysis

i. Secular Trend

Using regression analysis, estimating equation is
$\hat{\mathrm{Y}}=\mathrm{a}+\mathrm{bX}$ (linear trend)
After coding (or translating time)
$\mathrm{a}=\overline{\mathrm{Y}} \mathrm{b}=\frac{\Sigma \mathrm{xY}}{\Sigma \mathrm{x}^{2}}$
Where,
$\mathrm{x}=(\mathrm{X}-\overline{\mathrm{X}})$ if there are odd number of data points and
$\mathrm{x}=2(\mathrm{X}-\overline{\mathrm{X}})$ if there are even number of data points.

Curvilinear trend, $\hat{\mathrm{Y}}=\mathrm{a}+\mathrm{bX}+\mathrm{X}^{2}$
After coding (or translating time) is done
$\Sigma \mathrm{Y}=\mathrm{an}+\mathrm{c} \Sigma \mathrm{x}^{2}$
$\Sigma \mathrm{x}^{2} \mathrm{Y}=\quad \mathrm{a} \Sigma \mathrm{x}^{2}+\mathrm{c} \Sigma \mathrm{x}^{4}$ and $\mathrm{b}=\frac{\Sigma \mathrm{x} Y}{\Sigma \mathrm{x}^{2}}$
Where,
$\mathrm{x}=(\mathrm{X}-\overline{\mathrm{X}})$ if there are odd number of data points and
$\mathrm{x}=2(\mathrm{X}-\overline{\mathrm{X}})$ if there are even number of data points
ii. Cyclical Variation
a. Percent of Trend Measure

Cyclical variation component $=\frac{Y}{\hat{Y}} \times 100$
Where,
Y represents actual values and
\hat{Y} represents estimated values
b. Relative Cyclical Residual Measure

Cyclical Component $=\frac{Y-\hat{Y}}{\hat{Y}} \times 100$

11. Index Numbers

i. Unweighted Aggregates Price Index $=\frac{\Sigma \mathrm{P}_{1}}{\Sigma \mathrm{P}_{0}} \times 100$

Where,
$\Sigma \mathrm{P}_{1}=$ Sum of all elements in the composite for current year
$\Sigma \mathrm{P}_{0}=$ Sum of all elements in the composite for base year
ii. Weighted Aggregates Index
a. Laspeyre's Price Index
$=\frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{0}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{0}} \times 100$
b. Laspeyre's Quantity Index $=\frac{\Sigma \mathrm{Q}_{1} \mathrm{P}_{0}}{\Sigma \mathrm{Q}_{0} \mathrm{P}_{0}} \times 100$

Where,
$\mathrm{P}_{1}=$ Prices in the current year
$\mathrm{P}_{0} \quad=\quad$ Prices in the base year
$\mathrm{Q}_{0}=$ Quantities in the base year
$\mathrm{Q}_{1}=$ Quantities in the current year
c. Paasche's Price Index

$$
=\frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{1}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{1}} \times 100
$$

d. Fisher's Ideal Price Index $=\sqrt{\frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{0}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{0}} \times \frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{1}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{1}}} \times 100$
e. Fisher's Ideal Quantity Index $=\sqrt{\frac{\Sigma \mathrm{Q}_{1} \mathrm{P}_{0}}{\Sigma \mathrm{Q}_{0} \mathrm{P}_{0}} \times \frac{\Sigma \mathrm{Q}_{1} \mathrm{P}_{1}}{\Sigma \mathrm{Q}_{0} \mathrm{P}_{1}}} \times 100$
f. Marshall Edgeworth Price Index $=\frac{\Sigma\left(\mathrm{Q}_{0}+\mathrm{Q}_{1}\right) \mathrm{P}_{1}}{\Sigma\left(\mathrm{Q}_{0}+\mathrm{Q}_{1}\right) \mathrm{P}_{0}} \times 100$
iii. Value Index Number $=\frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{1}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{0}} \times 100$
iv. Average of Relatives Method
a. Unweighted average of relatives method $=\frac{\Sigma\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{0}} \times 100\right)}{\mathrm{n}}$
b. Unweighted average of relatives quantity index

$$
=\frac{\Sigma\left(\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{0}} \times 100\right)}{\mathrm{n}}
$$

c. Weighted average of relatives price index

$$
=\frac{\Sigma\left[\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{0}} \times 100\right)\left(\mathrm{P}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}\right)\right]}{\Sigma \mathrm{P}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}}
$$

Where,
$\mathrm{P}_{\mathrm{n}} \quad=\quad$ Prices in the fixed period
$\mathrm{Q}_{\mathrm{n}} \quad=\quad$ Quantities in the fixed period
$P_{n} Q_{n}=\quad$ Value in the fixed period
v. Chain Index Numbers

Chain Index for a given year $=\frac{\begin{array}{l}\text { Average link relative } \\ \text { of the given year } \\ \times\end{array}}{\begin{array}{l}\text { Chain index of } \\ \text { previous year }\end{array}}$
Where,
Link relative $=\frac{\text { Price in a given period }}{\text { Previous year's price }} \times 100$

12. Quality Control

i. $\overline{\mathrm{X}}$-Charts
a. When Mean and Standard Deviation are known:

Lower limit $=\mu_{\overline{\mathrm{x}}}-3 \sigma_{\overline{\mathrm{x}}}$
Upper limit $=\mu_{\overline{\mathrm{x}}}+3 \sigma_{\overline{\mathrm{x}}}$
b. When the mean and standard deviation are not known, then

Lower control limit $=\overline{\bar{X}}-\mathrm{A}_{2} \overline{\mathrm{R}}$
Upper control limit $=\overline{\bar{X}}+\mathrm{A}_{2} \overline{\mathrm{R}}$
Where,
$\overline{\overline{\mathrm{X}}}=\frac{1}{\mathrm{k}} \Sigma \overline{\mathrm{X}}=\frac{\Sigma \mathrm{x}}{\mathrm{n} \times \mathrm{k}}$
$\mathrm{A}_{2}=\frac{3}{\mathrm{~d}_{2} \sqrt{\mathrm{n}}}$
ii. R-Charts

Lower control limit $=\mathrm{D}_{3} \overline{\mathrm{R}}$
Upper control limit $=\mathrm{D}_{4} \overline{\mathrm{R}}$
Where,
$\mathrm{D}_{3}=\left(1-\frac{3 \mathrm{~d}_{3}}{\mathrm{~d}_{2}}\right), \mathrm{D}_{4}=\left(1+\frac{3 \mathrm{~d}_{3}}{\mathrm{~d}_{2}}\right)$
iii. p-Charts

When \mathbf{p} is known:
Lower control limit $=p-3 \sigma_{\bar{p}}$
Upper control limit $=p+3 \sigma_{\bar{p}}$
Where,
$\sigma_{\bar{p}}=\sqrt{\frac{p q}{n}}$
When \mathbf{p} is unknown:
$\overline{\overline{\mathrm{p}}}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{j}}}{\mathrm{k}}$
Where,
$\overline{\mathrm{p}}_{\mathrm{j}}$ is the jth sample fraction
k is the number of all the samples considered
In calculating the lower and upper control limits $\overline{\overline{\mathrm{p}}}$ is used instead of p .

13. Chi-Square Test and Analysis of Variance

i. The chi-square statistic is given by
$\chi^{2}=\sum \frac{\left(\mathrm{f}_{0}-\mathrm{f}_{\mathrm{e}}\right)^{2}}{\mathrm{f}_{\mathrm{e}}}$
Where,
$\mathrm{f}_{0}=$ The observed frequency
$\mathrm{f}_{\mathrm{e}} \quad=\quad$ The expected frequency
ii. Number of Degrees of Freedom in a contingency table

$$
=\quad(\text { Number of rows }-1) \times(\text { Number of columns }-1)
$$

Number of degrees of freedom in chi-square test of goodness of fit for ' k ' data points $=k-1$
iii. ANOVA
a. Between-Column Variance, $\hat{\sigma}^{2}=\frac{\sum \mathrm{n}_{\mathrm{j}}\left(\overline{\mathrm{x}}_{\mathrm{j}}-\overline{\bar{x}}\right)^{2}}{\mathrm{k}-1}$
b. Within column variance, $\hat{\sigma}^{2}=\Sigma\left(\frac{n_{j}-1}{n_{T}-k}\right) S_{j}^{2}$

Where,
$\hat{\sigma}^{2}=$ The second estimate of the population variance
$\mathrm{n}_{\mathrm{j}} \quad=\quad$ The size of the jth sample

$$
\begin{aligned}
\mathrm{n}_{\mathrm{T}} & =\text { The total number of elements present in all the samples } \\
\mathrm{k} & =\text { The number of samples } \\
\mathrm{s}_{\mathrm{j}}^{2} & =\text { The sample variance of the sample } \mathrm{j} \\
\overline{\mathrm{x}}_{\mathrm{j}} & =\text { Mean of jth sample } \\
\overline{\overline{\mathrm{x}}} & =\text { Grand mean } \\
\text { c. } \quad \text { F ratio } & =\frac{\binom{\text { Population variance obtained from the variance among the }}{\text { sample means (between column variance) }}}{\binom{\text { Population variance obtained from the variance within }}{\text { the individual samples (within column variance) }}}
\end{aligned}
$$

Degrees of freedom for the numerator $=(\mathrm{k}-1)$
DOF for Denominator $=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{n}_{\mathrm{j}}-1\right)=\mathrm{n}_{\mathrm{T}}-\mathrm{k}$
iv. Chi-square statistic for a sample variance is given by $\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$

Number of degrees of freedom $=\mathrm{n}-1$
v. Inferences about two population variances

F ratio for testing the equality of two population variances is given by
$\mathrm{F}=\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}}$

Where,
$\mathrm{s}_{1}^{2} \quad=\quad$ The variance of the first sample
$\mathrm{s}_{2}^{2} \quad=\quad$ The variance of the second sample
This distribution will have $n_{1}-1$ degrees of freedom in the numerator and $n_{2}-1$ degrees of freedom in the denominator respectively, n_{1} and n_{2} represent the number of elements present in each of the samples.

XI. Security Analysis

1. Bond Valuation

i. The intrinsic value or the present value of a bond
V_{0} or $\mathrm{P}_{0}=\mathrm{I}\left(\mathrm{PVIFA}_{\mathrm{kd}, \mathrm{n}}\right)+\mathrm{F}\left(\mathrm{PVIF}_{\mathrm{kd}, \mathrm{n}}\right)$
Where,
$\mathrm{V}_{0} \quad=\quad$ Intrinsic value of the bond
$\mathrm{P}_{0} \quad=\quad$ Present value of the bond
I = Annual interest payable on the bond
$\mathrm{F} \quad=\quad$ Principal amount (par value) repayable at the maturity time
$\mathrm{n} \quad=\quad$ Maturity period of the bond
$\mathrm{k}_{\mathrm{d}}=$ Cost of Capital or Required rate of return
ii. Current yield $=\frac{\text { Coupon Interest }}{\text { Prevailing Market Price }}$
iii. Yield to maturity is r in the equation, $P_{0}=\sum_{t=1}^{n} \frac{I}{(1+r)^{t}}+\frac{F}{(1+r)^{n}}$

Where,
$\mathrm{P}_{0} \quad=\quad$ Present value of the bond
I $=$ Annual interest payable on the bond
F $\quad=\quad$ Principal amount (par value) repayable at the maturity time
$\mathrm{n} \quad=\quad$ Maturity period of the bond
iv. Realized yield is r in the equation $=P_{0}(1+r)^{n}$

$$
=\text { Total cash flows received by the investor }
$$

v. Nominal Rate $=$ Risk-free rate + Inflation rate
vi. \quad Duration $=\frac{1 \mathrm{C} \cdot \text { PVIF }_{\mathrm{r}, 1}+2 \mathrm{C} \cdot \text { PVIF }_{\mathrm{r}, 2}+\ldots+\mathrm{n}[\mathrm{C}+\mathrm{F}] \text { PVIF }_{\mathrm{r}, \mathrm{n}}}{\mathrm{P}_{0}}$

Where,
$\mathrm{C}=$ Coupon interest payments
$\mathrm{r}=$ Promised yield to maturity
$\mathrm{n} \quad=\quad$ Number of years to maturity
$\mathrm{F}=$ Redemption value
vii. Simplified formula for duration
$D \quad=\quad \frac{r_{c}}{r_{d}} \operatorname{PVIFA}_{\left(r_{d, n)}\right)} \times\left(1+r_{d}\right)+\left[1-\frac{r_{c}}{r_{d}}\right] n$
Where,
$\mathrm{r}_{\mathrm{c}} \quad=\quad$ Coupon yield
$\mathrm{r}_{\mathrm{d}}=\mathrm{YTM}$
$\mathrm{n} \quad=\quad$ Number of years to maturity
viii. When bond is selling at par, (i.e. $r_{c}=r_{d}$)

Duration $(D)=$ PVIFA $_{\left(r_{d, n}\right)} \times\left(1+r_{d}\right)$
Where,

r_{c}	$=$	Coupon yield
r_{d}	$=$	YTM
n	$=$	Number of years to maturity

ix. Duration of a perpetual bond, $D=\frac{1+r}{r}$

Where,
$\mathrm{r}=$ Current yield
x. \quad Limiting value of duration $=\frac{1+\mathrm{YTM}}{\mathrm{YTM}}$
xi. Interest rate elasticity, $\mathrm{IE}=\frac{\Delta \mathrm{P}_{0} / \mathrm{P}_{0}}{\Delta \mathrm{YTM} / \mathrm{YTM}}$

Where,
$\Delta P_{0} \quad=\quad$ Change in price for bond in period t
$\mathrm{P}_{0} \quad=$ Price of the bond at the period 0
$\Delta \mathrm{YTM}=$ Change in YTM for the bond
YTM $=$ Yield to maturity
xii. Approximate method of calculating interest rate elasticity
$\mathrm{IE}=\mathrm{D}_{\mathrm{it}} \times \frac{\mathrm{YTM}}{1+\mathrm{YTM}}$
Where,
$\mathrm{D}_{\mathrm{it}}=$ Duration
YTM $=$ Yield to maturity
xiii. Interest rate risk which measures change in price of bond for a change in the YTM
$\frac{\Delta \mathrm{P}_{0}}{\mathrm{P}_{0}}=\mathrm{IE}_{\mathrm{it}} \times \frac{\Delta \mathrm{YTM}}{\mathrm{YTM}}$
Where,
$\mathrm{IE}_{\mathrm{it}} \quad=$ Interest rate elasticity
$\Delta \mathrm{P}_{0} \quad=\quad$ Change in price for bond in period t
$\mathrm{P}_{0} \quad=\quad$ Price of the bond at the period 0
$\Delta \mathrm{YTM}=$ Change in YTM for the bond
$\mathrm{YTM}=$ Yield to maturity
xiv. Modified Duration: $\mathrm{D}_{\mathrm{mod}}=\frac{\mathrm{D}}{1+\frac{\mathrm{YTM}}{\mathrm{f}}}$

Where,
$\mathrm{f}=$ Discounting periods per year
$\mathrm{D}=$ Macaulay's duration
$\mathrm{YTM}=\quad$ Yield to maturity in decimal form
$x v$. Percentage price volatility $=\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100=-\mathrm{D}_{\text {mod }} \cdot \Delta \mathrm{y}$
Where,
$\Delta \mathrm{P}=$ Change in the price of the bond
$\mathrm{P} \quad=\quad$ Price of the bond
$\Delta \mathrm{y}=$ Change in YTM
$\mathrm{D}_{\text {mod }}=$ Modified duration
xvi. \quad Duration of equity based on dividend discount model $=\frac{1}{\mathrm{k}-\mathrm{g}}$

Where,
$\mathrm{k}=$ Return required by equity holders
$\mathrm{g}=$ Constant growth rate of dividend
xvii. Duration of equity $=\frac{1}{\text { Dividend yield }}=\frac{\text { Market price }}{\text { Dividend }}$

2. Equity Stock Valuation Model

i. The intrinsic value or present value equity share
$\left(\mathrm{P}_{0}\right)=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{D}_{\mathrm{t}}}{\left(1+\mathrm{k}_{\mathrm{e}}\right)^{\mathrm{t}}}+\frac{\mathrm{P}_{\mathrm{n}}}{\left(1+\mathrm{k}_{\mathrm{e}}\right)^{\mathrm{n}}}$
Where,
$\mathrm{P}_{0} \quad=\quad$ Current market price of the equity share or intrinsic value of the share
$D_{t}=$ Expected equity dividend at time t
$P_{n}=$ Expected price of the equity share at time n
$\mathrm{k}_{\mathrm{e}} \quad=\quad$ Expected rate of return or required rate of return
ii. The value of equity share when there is constant growth
$\left(\mathrm{P}_{0}\right)=\frac{\mathrm{D}_{0}(1+\mathrm{g})}{\mathrm{k}_{\mathrm{e}}-\mathrm{g}}$
Where,
$\mathrm{P}_{0}=$ Intrinsic value of the share
$\mathrm{D}_{0}=$ Current dividend per share
g $=$ Expected constant growth rate in dividends
$\mathrm{k}_{\mathrm{e}}=$ Expected rate of return or required rate of return
iii. The value of equity share using H Model
$\left(\mathrm{P}_{0}\right)=\frac{\mathrm{D}_{0}\left[\left(1+\mathrm{g}_{\mathrm{n}}\right)+\mathrm{H}\left(\mathrm{g}_{\mathrm{a}}-\mathrm{g}_{\mathrm{n}}\right)\right]}{\mathrm{r}-\mathrm{g}_{\mathrm{n}}}$
Where,
$\mathrm{P}_{0} \quad=\quad$ Intrinsic value of the share
$\mathrm{D}_{0} \quad=\quad$ Current dividend per share
$\mathrm{r}=$ Required rate of return
$\mathrm{g}_{\mathrm{n}} \quad=\quad$ Normal long run growth rate
$\mathrm{g}_{\mathrm{a}}=$ Current growth rate
$H \quad=\quad$ One half of the period during which g_{a} will level off to g_{n}

3. Technical Analysis

i. Relative Strength, $\mathrm{RS}=\left(\frac{\text { Average of ' } \mathrm{x} \text { 'days up-closings }}{\text { Average of 'x 'days down-closings }}\right)$
ii. Relative strength index $=100-\frac{100}{1+\mathrm{RS}}$
iii. \quad Odd-lot index $=\frac{\text { Odd-lot sales }}{\text { Odd-lot purchases }}$
iv. \quad Odd-lot short sales ratio $=\frac{\text { Odd-lot short sales }}{\text { Total odd-lot sales }}$
v. Stochastics $(\% \mathrm{~K})=\frac{\mathrm{C}-\mathrm{L}}{\mathrm{H}-\mathrm{L}} \times 100$

Where,
C = Latest closing price
$\mathrm{L}=$ Low price during the last N periods
$\mathrm{H}=$ High price during the last N periods
$\mathrm{N}=$ Number of periods
$\% \mathrm{D}=$ Derived by smoothening $\% \mathrm{~K}$ using the simple moving average technique.
4. Warrants and Convertibles
i. Percentage of downside risk $=$
$\underline{\left(\begin{array}{c}\text { Market price of convertible security -Price of an equivalent non-convertible) } \\ \text { security }\end{array}\right.} \times 100$
Price of an equivalent non-convertible security
ii. Conversion premium $=\frac{\text { Market price }- \text { Conversion value }}{\text { Conversion value }} \times 100$
iii. Conversion parity price

Bond price
Number of shares on conversion per warrant
iv. Break even period

$$
=\frac{\text { Conversion premium }}{\text { Interest income }- \text { Dividends }}
$$

v. Payback period $=\frac{\frac{\% \text { premium }}{1+\% \text { premium }}}{\text { Current yield }-\frac{\text { Dividend yield }}{1+\% \text { premium }}}$
5. Real Assets and Mutual Funds
i. $\quad \mathrm{MV}_{0}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{NOI}_{\mathrm{t}}}{(1+\mathrm{r})^{\mathrm{t}}}+\frac{\mathrm{MV}_{\mathrm{n}}}{(1+\mathrm{r})^{\mathrm{n}}}$

Where,
$\mathrm{MV}_{0}=$ The current market price of the property
$M V_{n}=$ The expected sales price of the property
$\mathrm{r}=$ The required rate of return
NOI $_{t}=$ Net operating income at time t
ii. If operating income grows at the rate ' g ' annually,
$\mathrm{MV}_{0}=\frac{\mathrm{NOI}}{\mathrm{r}-\mathrm{g}}$
Where,

$$
\begin{array}{lll}
\mathrm{NOI} & = & \text { Net operating income } \\
\mathrm{g} & = & \text { Growth rate } \\
\mathrm{r} & =\text { Required return }
\end{array}
$$

iii. \quad Net Asset Value $($ NAV $)=\frac{\text { Assets }- \text { Liabilities }}{\text { No.of units outstanding }}$

XII. Strategic Financial Management

1. Capital Structure

i. Relation between EBIT and EPS
$\mathrm{EPS}=\frac{(\text { EBIT }-\mathrm{I})(1-\mathrm{t})}{\mathrm{n}}$
Where,
EBIT $=$ Earning Before Interest and Tax
EPS $=$ Earning per share
I $=$ Interest payment
$\mathrm{t}=$ Tax rate
$\mathrm{n}=$ Number of shares
ii. EBIT - EPS Indifference Point $=\frac{\left(\text { EBIT }-I_{1}\right)(1-t)}{n_{1}}=\frac{\left(E B I T-I_{2}\right)(1-t)}{n_{2}}$

Where,
EPS = Earning Per Share
$\mathrm{I}_{1} \& \mathrm{I}_{2} \quad=$ Interest payment under alternative one and interest payment under alternative two respectively
iii. Relation between ROI and ROE

ROE $=\left\{\mathrm{ROI}+\left(\mathrm{ROI}-\mathrm{k}_{\mathrm{d}}\right) \mathrm{D} / \mathrm{E}\right\}(\mathrm{I}-\mathrm{t})$
Where,
ROE $=$ The Return on Equity
ROI $=$ The Return on Investment
$\mathrm{k}_{\mathrm{d}} \quad=$ The cost of debt (pre-tax)
$\mathrm{D}=$ The debt component in the total capital
$\mathrm{E}=$ The equity component in the total capital
$\mathrm{t}=$ The tax rate .
2. Decision Support Models
i. Extended Probabilistic Analysis

$$
C_{1}=C_{0}+\tilde{n} \tilde{s}-v \tilde{n} \tilde{s}-\tilde{n} f-\tilde{n} i-T\left(\tilde{n} \tilde{s}-v \tilde{n} \tilde{s}-\tilde{n} f-\tilde{n} i-\tilde{n} f^{\prime}\right)
$$

Where,
$\mathrm{C}_{1}=$ Ending cash balance
$\mathrm{C}_{0}=$ Beginning cash balance
$\tilde{\mathrm{n}}=$ Duration of the recession in months
$\tilde{\mathrm{s}}=$ Monthly sales during the recession
$\tilde{n} \tilde{s}=$ Total sales during the recession
v $\quad=$ Proportion of variable cash expenses to sales
$v \tilde{n} \tilde{s}=$ Total variable cash expenses during the recession
f $=$ Monthly fixed cash expenses, other than debt servicing burden, during the recession
$\tilde{n} f=$ Total fixed cash expenses, other than debt servicing burden during the recession
i $=$ Monthly interest payment associated with the contemplated level of debt during the recession
$\tilde{n} \mathrm{i}=$ Total interest payment associated with the contemplated level of debt during the recession
$\mathrm{f}^{\prime}=$ Monthly non-cash fixed expenses
$\mathrm{nf}^{\prime}=$ Total non-cash fixed expenses during the recession
$\mathrm{T}=$ Corporate income tax rate.

3. Working Capital Management

i. Discriminant Analysis
$Z_{i}=a X_{i}+b Y_{i}$
Where,
$\mathrm{Z}_{\mathrm{i}} \quad=\quad$ The Z -score for the ith account
$X_{i} \quad=\quad$ The value of the first independent variable for the ith account
 b are the parameter values
$\mathrm{a}=\frac{\sigma_{y}^{2} \cdot \mathrm{~d}_{\mathrm{x}}-\sigma_{\mathrm{xy}} \cdot \mathrm{d}_{\mathrm{y}}}{\sigma_{\mathrm{x}}^{2} \cdot \sigma_{\mathrm{y}}^{2}-\left(\sigma_{\mathrm{xy}}\right)^{2}}$
$b=\frac{\sigma_{x}^{2} \cdot d_{y}-\sigma_{x y} \cdot d_{x}}{\sigma_{x}^{2} \cdot \sigma_{y}^{2}-\left(\sigma_{x y}\right)^{2}}$
Where,
$\sigma_{\mathrm{x}}^{2}=\quad$ Variance of X (across groups 1 and 2)
$\sigma_{\mathrm{xy}}=\quad$ Covariance of X and Y (across groups 1 and 2)
$\sigma_{\mathrm{y}}^{2}=\quad$ Variance of Y (across groups 1 and 2)
$\mathrm{d}_{\mathrm{x}}=\quad$ Difference between the mean values of X for groups 1 and 2
$\mathrm{d}_{\mathrm{y}} \quad=\quad$ Difference between the mean values of Y for groups 1 and 2
ii. Cash Management Models
a. Baumol Model, $\mathrm{TC}=\mathrm{I}(\mathrm{C} / 2)+\mathrm{b}(\mathrm{T} / \mathrm{C})$

Where,
$\mathrm{TC}=$ Total costs (total conversion costs + total holding costs)
I = Interest rate on marketable securities per planning period
C $=$ Amount of securities liquidated per batch
$\mathrm{T}=$ Estimated cash requirement over the planning period
The point where total costs are minimum:
$\mathrm{C}=\sqrt{\frac{2 \mathrm{bT}}{\mathrm{I}}}$
$\mathrm{b} \quad=\quad$ Fixed conversion cost
b. Miller and Orr Model

$$
\begin{aligned}
& R P=\sqrt[3]{\frac{3 b \sigma^{2}}{4 \mathrm{I}}}+\mathrm{LL} \text { and, } \\
& \mathrm{UL}=3 \mathrm{RP}-2 \mathrm{LL} \\
& \text { Where, } \\
& \text { LL = Lower control limit } \\
& \text { RP }=\text { Return point } \\
& \text { UL = Upper control limit } \\
& \text { b } \quad=\quad \text { Fixed conversion cost } \\
& \text { I = Interest rate per day on marketable securities } \\
& \sigma^{2}=\text { Variance of daily changes in the expected cash balance. }
\end{aligned}
$$

4. Firms in Financial Distress

i. Altman's Z-Score Model (to identify the financial distress of the firm)
$\mathrm{Z}=1.2 \mathrm{X}_{1}+1.4 \mathrm{X}_{2}+3.3 \mathrm{X}_{3}+0.6 \mathrm{X}_{4}+1.0 \mathrm{X}_{5}$
Where,
$\mathrm{Z}=$ Discriminant score
$\mathrm{X}_{1}=$ Working capital/Total assets
$\mathrm{X}_{2}=$ Retained earnings/Total assets
$\mathrm{X}_{3}=$ EBIT/Total assets
$\mathrm{X}_{4}=$ Market value of equity/Book value of debt
$\mathrm{X}_{5} \quad=$ Sales/Total assets.

5. Valuation of Firms

i. a. Free cashflow of a firm = Free cashflow from operations + Nonoperating cashflows
b. Free cash flows from operations $=$ Gross cash flows of the firm - Gross investments
c. Gross cashflows of the firm $=$ EBIT $(1-\mathrm{T})+$ Depreciation + Non-cash charges
d. Gross Investment = Increase in Net Working Capital + Capital Expenditure incurred + Increase in Other Assets.

6. Mergers and Acquisitions

i. Net Acquisition Value

$N A V=P V_{a b}-\left(P V_{a}+P V_{b}\right)-P-E$
Where,
NAV $=$ The Net Acquisition Value
$P V_{a b}=$ The present value of the merged entity
$P V_{a}=$ The present value of firm A
$\mathrm{PV}_{\mathrm{b}}=$ The present value of firm B
$\mathrm{P} \quad=$ The premium paid by Firm A to acquire Firm B
$\mathrm{E}=$ The expenses involved in the merger

ii. Conn \& Nielson Model

a. Maximum Exchange Ratio acceptable to the Acquiring company
$E R=\frac{-S_{1}}{S_{2}}+\frac{\left(E_{1}+E_{2}\right) P E_{12}}{P_{1} S_{2}}$
Where,
ER = Exchange Ratio
$\mathrm{E}_{1} \& \mathrm{E}_{2}=$ Earnings per Share of acquiring and target companies respectively
$\mathrm{P}_{1} \quad=$ Market price per share of acquiring company
$\mathrm{PE}_{12}=$ Price to Earnings Multiple of merged entity
$S_{1} \& S_{2}=$ Number of Shares outstanding in acquiring and target companies respectively
b. Minimum Exchange Ratio Acceptable to the Target Company
$E R=\frac{P_{2} S_{1}}{\left(P E_{12}\right)\left(E_{1}+E_{2}\right)-P_{2} S_{2}}$
Where,
ER = Exchange Ratio
$\mathrm{P}_{2} \quad=$ Market price per share of target company
$\mathrm{E}_{1} \& \mathrm{E}_{2}=$ Earnings per share of acquiring and target companies respectively
$\mathrm{PE}_{12}=$ Price to Earnings Multiple of merged entity
$S_{1} \& S_{2}=$ Number of shares outstanding in acquiring and target companies respectively.

TABLES

$0^{0^{4}}$

INTEREST RATE TABLES

Table A.1: Future Value Interest Factor

$$
\mathrm{FV}=\mathrm{PV}(1+\mathrm{k})^{\mathrm{n}}
$$

n/i	1.0\%	2.0\%	3.0\%	4.0\%	5.0\%	6.0\%	7.0\%	8.0\%	9.0\%	10.0\%
1	1.0100	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000
2	1.0201	1.0404	1.0609	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100
3	1.0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310
4	1.0406	1.0824	1.1255	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641
5	1.0510	1.1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105
6	1.0615	1.1262	1.1941	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716
7	1.0721	1.1487	1.2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487
8	1.0829	1.1717	1.2668	1.3686	1.4775	1.5938	1.7182	1.8509	1.9926	2.1436
9	1.0937	1.1951	1.3048	1.4233	1.5513	1.6895	1.8385	1.9990	2.1719	2.3579
10	1.1046	1.2190	1.3439	1.4802	1.6289	1.7908	1.9672	2.1589	2.3674	2.5937
11	1.1157	1.2434	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.8531
12	1.1268	1.2682	1.4258	1.6010	1.7959	2.0122	2.2522	2.5182	2.8127	3.1384
13	1.1381	1.2936	1.4685	1.6651	1.8856	2.1329	2.4098	2.7196	3.0658	3.4523
14	1.1495	1.3195	1.5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975
15	1.1610	1.3459	1.5580	1.8009	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772
16	1.1726	1.3728	1.6047	1.8730	2.1829	2.5404	2.9522	3.4259	3.9703	4.5950
17	1.1843	1.4002	1.6528	1.9479	2.2920	2.6928	3.1588	3.7000	4.3276	5.0545
18	1.1961	1.4282	1.7024	2.0258	2.4066	2.8543	3.3799	3.9960	4.7171	5.5599
19	1.2081	1.4568	1.7535	2.1068	2.5270	3.0256	3.6165	4.3157	5.1417	6.1159
20	1.2202	1.4859	1.8061	2.1911	2.6533	3.2071	3.8697	4.6610	5.6044	6.7275
21	1.2324	1.5157	1.8603	2.2788	2.7860	3.3996	4.1406	5.0338	6.1088	7.4002
22	1.2447	1.5460	1.9161	2.3699	2.9253	3.6035	4.4304	5.4365	6.6586	8.1403
23	1.2572	1.5769	1.9736	2.4647	3.0715	3.8197	4.7405	5.8715	7.2579	8.9543
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9.8497
25	1.2824	1.6406	2.0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.8347
26	1.2953	1.6734	2.1566	2.7725	3.5557	4.5494	5.8074	7.3964	9.3992	11.9182
27	1.3082	1.7069	2.2213	2.8834	3.7335	4.8223	6.2139	7.9881	10.2451	13.1100
28	1.3213	1.7410	2.2879	2.9987	3.9201	5.1117	6.6488	8.6271	11.1671	14.4210
29	1.3345	1.7758	2.3566	3.1187	4.1161	5.4184	7.1143	9.3173	12.1722	15.8631
30	1.3478	1.8114	2.4273	3.2434	4.3219	5.7435	7.6123	10.0627	13.2677	17.4494
40	1.4889	2.2080	3.2620	4.8010	7.0400	10.2857	14.9745	21.7245	31.4094	45.2593
50	1.6446	2.6916	4.3839	7.1067	11.4674	18.4202	29.4570	46.9016	74.3575	117.3909
60	1.8167	3.2810	5.8916	10.5196	18.6792	32.9877	57.9464	101.2571	176.0313	304.4816

Formulae and Tables

n/i	12.0\%	14.0\%	15.0\%	16.0\%	18.0\%	20.0\%	24.0\%	28.0\%	32.0\%	36.0\%
1	1.1200	1.1400	1.1500	1.1600	1.1800	1.2000	1.2400	1.2800	1.3200	1.3600
2	1.2544	1.2996	1.3225	1.3456	1.3924	1.4400	1.5376	1.6384	1.7424	1.8496
3	1.4049	1.4815	1.5209	1.5609	1.6430	1.7280	1.9066	2.0972	2.3000	2.5155
4	1.5735	1.6890	1.7490	1.8106	1.9388	2.0736	2.3642	2.6844	3.0360	3.4210
5	1.7623	1.9254	2.0114	2.1003	2.2878	2.4883	2.9316	3.4360	4.0075	4.6526
6	1.9738	2.1950	2.3131	2.4364	2.6996	2.9860	3.6352	4.3980	5.2899	6.3275
7	2.2107	2.5023	2.6600	2.8262	3.1855	3.5832	4.5077	5.6295	6.9826	8.6054
8	2.4760	2.8526	3.0590	3.2784	3.7589	4.2998	5.5895	7.2058	9.2170	11.7034
9	2.7731	3.2519	3.5179	3.8030	4.4355	5.1598	6.9310	9.2234	12.1665	15.9166
10	3.1058	3.7072	4.0456	4.4114	5.2338	6.1917	8.5944	11.8059	16.0598	21.6466
11	3.4785	4.2262	4.6524	5.1173	6.1759	7.4301	10.6571	15.1116	21.1989	29.4393
12	3.8960	4.8179	5.3503	5.9360	7.2876	8.9161	13.2148	19.3428	27.9825	40.0375
13	4.3635	5.4924	6.1528	6.8858	8.5994	10.6993	16.3863	24.7588	36.9370	54.4510
14	4.8871	6.2613	7.0757	7.9875	10.1472	12.8392	20.3191	31.6913	48.7568	74.0534
15	5.4736	7.1379	8.1371	9.2655	11.9737	15.4070	25.1956	40.5648	64.3590	100.7126
16	6.1304	8.1372	9.3576	10.7480	14.1290	18.4884	31.2426	51.9230	84.9538	136.9691
17	6.8660	9.2765	10.7613	12.4677	16.6722	22.1861	38.7408	66.4614	112.1390	186.2779
18	7.6900	10.5752	12.3755	14.4625	19.6733	26.6233	48.0386	85.0706	148.0235	253.3380
19	8.6128	12.0557	14.2318	16.7765	23.2144	31.9480	59.5679	108.8904	195.3911	344.5397
20	9.6463	13.7435	16.3665	19.4608	27.3930	38.3376	73.8641	139.3797	257.9162	468.5740
21	10.8038	15.6676	18.8215	22.5745	32.3238	46.0051	91.5915	178.4060	340.4494	637.2606
22	12.1003	17.8610	21.6447	26.1864	38.1421	55.2061	113.5735	228.3596	449.3932	866.6744
23	13.5523	20.3616	24.8915	30.3762	45.0076	66.2474	140.8312	292.3003	593.1990	1178.6772
24	15.1786	23.2122	28.6252	35.2364	53.1090	79.4968	174.6306	374.1444	783.0227	1603.0010
25	17.0001	26.4619	32.9190	40.8742	62.6686	95.3962	216.5420	478.9049	1033.5900	2180.0814
26	19.0401	30.1666	37.8568	47.4141	73.9490	114.4755	268.5121	612.9982	1364.3387	2964.9107
27	21.3249	34.3899	43.5353	55.0004	87.2598	137.3706	332.9550	784.6377	1800.9271	4032.2786
28	23.8839	39.2045	50.0656	63.8004	102.9666	164.8447	412.8642	1004.3363	2377.2238	5483.8988
29	26.7499	44.6931	57.5755	74.0085	121.5005	197.8136	511.9516	1285.5504	3137.9354	7458.1024
30	29.9599	50.9502	66.2118	85.8499	143.3706	237.3763	634.8199	1645.5046	4142.0748	10143.0193
40	93.0510	188.8835	267.8635	378.7212	750.3783	1469.7716	5455.9126	19426.6889	66520.7670	219561.5736
50	289.0022	700.2330	1083.6574	1670.7038	3927.3569	9100.4382	46890.4346	229349.8616	1068308.1960	4752754.9027
60	897.5969	2595.9187	4383.9987	7370.2014	20555.1400	56347.5144	402996.3473	2707685.2482	17156783.5543	102880840.1651

Table A. 2 : Future Value Interest Factor for an Annuity

Formulae and Tables

n/i	12.0\%	14.0\%	15.0\%	16.0\%	18.0\%	20.0\%	24.0\%	28.0\%	32.0\%	36.0\%
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	2.1200	2.1400	2.1500	2.1600	2.1800	2.2000	2.2400	2.2800	2.3200	2.3600
3	3.3744	3.4396	3.4725	3.5056	3.5724	3.6400	3.7776	3.9184	4.0624	4.2096
4	4.7793	4.9211	4.9934	5.0665	5.2154	5.3680	5.6842	6.0156	6.3624	6.7251
5	6.3528	6.6101	6.7424	6.8771	7.1542	7.4416	8.0484	8.6999	9.3983	10.1461
6	8.1152	8.5355	8.7537	8.9775	9.4420	9.9299	10.9801	12.1359	13.4058	14.7987
7	10.0890	10.7305	11.0668	11.4139	12.1415	12.9159	14.6153	16.5339	18.6956	21.1262
8	12.2997	13.2328	13.7268	14.2401	15.3270	16.4991	19.1229	22.1634	25.6782	29.7316
9	14.7757	16.0853	16.7858	17.5185	19.0859	20.7989	24.7125	29.3692	34.8953	41.4350
10	17.5487	19.3373	20.3037	21.3215	23.5213	25.9587	31.6434	38.5926	47.0618	57.3516
11	20.6546	23.0445	24.3493	25.7329	28.7551	32.1504	40.2379	50.3985	63.1215	78.9982
12	24.1331	27.2707	29.0017	30.8502	34.9311	39.5805	50.8950	65.5100	84.3204	108.4375
13	28.0291	32.0887	34.3519	36.7862	42.2187	48.4966	64.1097	84.8529	112.3030	148.4750
14	32.3926	37.5811	40.5047	43.6720	50.8180	59.1959	80.4961	109.6117	149.2399	202.9260
15	37.2797	43.8424	47.5804	51.6595	60.9653	72.0351	100.8151	141.3029	197.9967	276.9793
16	42.7533	50.9804	55.7175	60.9250	72.9390	87.4421	126.0108	181.8677	262.3557	377.6919
17	48.8837	59.1176	65.0751	71.6730	87.0680	105.9306	157.2534	233.7907	347.3095	514.6610
18	55.7497	68.3941	75.8364	84.1407	103.7403	128.1167	195.9942	300.2521	459.4485	700.9389
19	63.4397	78.9692	88.2118	98.6032	123.4135	154.7400	244.0328	385.3227	607.4721	954.2769
20	72.0524	91.0249	102.4436	115.3797	146.6280	186.6880	303.6006	494.2131	802.8631	1298.8166
21	81.6987	104.7684	118.8101	134.8405	174.0210	225.0256	377.4648	633.5927	1060.7793	1767.3906
22	92.5026	120.4360	137.6316	157.4150	206.3448	271.0307	469.0563	811.9987	1401.2287	2404.6512
23	104.6029	138.2970	159.2764	183.6014	244.4868	326.2369	582.6298	1040.3583	1850.6219	3271.3256
24	118.1552	158.6586	184.1678	213.9776	289.4945	392.4842	723.4610	1332.6586	2443.8209	4450.0029
25	133.3339	181.8708	212.7930	249.2140	342.6035	471.9811	898.0916	1706.8031	3226.8436	6053.0039
26	150.3339	208.3327	245.7120	290.0883	405.2721	567.3773	1114.6336	2185.7079	4260.4336	8233.0853
27	169.3740	238.4993	283.5688	337.5023	479.2211	681.8528	1383.1457	2798.7061	5624.7723	11197.9960
28	190.6989	272.8892	327.1041	392.5028	566.4809	819.2233	1716.1007	3583.3438	7425.6994	15230.2745
29	214.5828	312.0937	377.1697	456.3032	669.4475	984.0680	2128.9648	4587.6801	9802.9233	20714.1734
30	241.3327	356.7868	434.7451	530.3117	790.9480	1181.8816	2640.9164	5873.2306	12940.8587	28172.2758
40	767.0914	1342.0251	1779.0903	2360.7572	4163.2130	7343.8578	22728.8026	69377.4604	207874.2719	609890.4824
50	2400.0182	4994.5213	7217.7163	10435.6488	21813.0937	45497.1908	195372.6442	819103.0771	3338459.9875	13202094.1741
60	7471.6411	18535.1333	29219.9916	46057.5085	114189.6665	281732.5718	1679147.2802	9670300.8863	53614945.48232	85780108.7920

Table A. 3 : Present Value Interest Factor

$$
P V=\frac{1}{(1+k)^{n}}
$$

n/i	1.0\%	2.0\%	3.0\%	4.0\%	5.0\%	6.0\%	7.0\%	8.0\%	9.0\%	10.0\%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091
2	0.9803	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.8573	0.8417	0.8264
3	0.9706	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513
4	0.9610	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7084	0.6830
5	0.9515	0.9057	0.8626	0.8219	0.7835	0.7473	0.7130	0.6806	0.6499	0.6209
6	0.9420	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645
7	0.9327	0.8706	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132
8	0.9235	0.8535	0.7894	0.7307	0.6768	0.6274	0.5820	0.5403	0.5019	0.4665
9	0.9143	0.8368	0.7664	0.7026	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241
10	0.9053	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855
11	0.8963	0.8043	0.7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.3505
12	0.8874	0.7885	0.7014	0.6246	0.5568	0.4970	0.4440	0.3971	0.3555	0.3186
13	0.8787	0.7730	0.6810	0.6006	0.5303	0.4688	0.4150	0.3677	0.3262	0.2897
14	0.8700	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.2633
15	0.8613	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394
16	0.8528	0.7284	0.6232	0.5339	0.4581	0.3936	0.3387	0.2919	0.2519	0.2176
17	0.8444	0.7142	0.6050	0.5134	0.4363	0.3714	0.3166	0.2703	0.2311	0.1978
18	0.8360	0.7002	0.5874	0.4936	0.4155	0.3503	0.2959	0.2502	0.2120	0.1799
19	0.8277	0.6864	0.5703	0.4746	0.3957	0.3305	0.2765	0.2317	0.1945	0.1635
20	0.8195	0.6730	0.5537	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486
21	0.8114	0.6598	0.5375	0.4388	0.3589	0.2942	0.2415	0.1987	0.1637	0.1351
22	0.8034	0.6468	0.5219	0.4220	0.3418	0.2775	0.2257	0.1839	0.1502	0.1228
23	0.7954	0.6342	0.5067	0.4057	0.3256	0.2618	0.2109	0.1703	0.1378	0.1117
24	0.7876	0.6217	0.4919	0.3901	0.3101	0.2470	0.1971	0.1577	0.1264	0.1015
25	0.7798	0.6095	0.4776	0.3751	0.2953	0.2330	0.1842	0.1460	0.1160	0.0923
26	0.7720	0.5976	0.4637	0.3607	0.2812	0.2198	0.1722	0.1352	0.1064	0.0839
27	0.7644	0.5859	0.4502	0.3468	0.2678	0.2074	0.1609	0.1252	0.0976	0.0763
28	0.7568	0.5744	0.4371	0.3335	0.2551	0.1956	0.1504	0.1159	0.0895	0.0693
29	0.7493	0.5631	0.4243	0.3207	0.2429	0.1846	0.1406	0.1073	0.0822	0.0630
30	0.7419	0.5521	0.4120	0.3083	0.2314	0.1741	0.1314	0.0994	0.0754	0.0573
40	0.6717	0.4529	0.3066	0.2083	0.1420	0.0972	0.0668	0.0460	0.0318	0.0221
50	0.6080	0.3715	0.2281	0.1407	0.0872	0.0543	0.0339	0.0213	0.0134	0.0085
60	0.5504	0.3048	0.1697	0.0951	0.0535	0.0303	0.0173	0.0099	0.0057	0.0033

Formulae and Tables

n/i	12.0\%	14.0\%	15.0\%	16.0\%	18.0\%	20.0\%	24.0\%	28.0\%	32.0\%	36.0\%
1	0.8929	0.8772	0.8696	0.8621	0.8475	0.8333	0.8065	0.7813	0.7576	0.7353
2	0.7972	0.7695	0.7561	0.7432	0.7182	0.6944	0.6504	0.6104	0.5739	0.5407
3	0.7118	0.6750	0.6575	0.6407	0.6086	0.5787	0.5245	0.4768	0.4348	0.3975
4	0.6355	0.5921	0.5718	0.5523	0.5158	0.4823	0.4230	0.3725	0.3294	0.2923
5	0.5674	0.5194	0.4972	0.4761	0.4371	0.4019	0.3411	0.2910	0.2495	0.2149
6	0.5066	0.4556	0.4323	0.4104	0.3704	0.3349	0.2751	0.2274	0.1890	0.1580
7	0.4523	0.3996	0.3759	0.3538	0.3139	0.2791	0.2218	0.1776	0.1432	0.1162
8	0.4039	0.3506	0.3269	0.3050	0.2660	0.2326	0.1789	0.1388	0.1085	0.0854
9	0.3606	0.3075	0.2843	0.2630	0.2255	0.1938	0.1443	0.1084	0.0822	0.0628
10	0.3220	0.2697	0.2472	0.2267	0.1911	0.1615	0.1164	0.0847	0.0623	0.0462
11	0.2875	0.2366	0.2149	0.1954	0.1619	0.1346	0.0938	0.0662	0.0472	0.0340
12	0.2567	0.2076	0.1869	0.1685	0.1372	0.1122	0.0757	0.0517	0.0357	0.0250
13	0.2292	0.1821	0.1625	0.1452	0.1163	0.0935	0.0610	0.0404	0.0271	0.0184
14	0.2046	0.1597	0.1413	0.1252	0.0985	0.0779	0.0492	0.0316	0.0205	0.0135
15	0.1827	0.1401	0.1229	0.1079	0.0835	0.0649	0.0397	0.0247	0.0155	0.0099
16	0.1631	0.1229	0.1069	0.0930	0.0708	0.0541	0.0320	0.0193	0.0118	0.0073
17	0.1456	0.1078	0.0929	0.0802	0.0600	0.0451	0.0258	0.0150	0.0089	0.0054
18	0.1300	0.0946	0.0808	0.0691	0.0508	0.0376	0.0208	0.0118	0.0068	0.0039
19	0.1161	0.0829	0.0703	0.0596	0.0431	0.0313	0.0168	0.0092	0.0051	0.0029
20	0.1037	0.0728	0.0611	0.0514	0.0365	0.0261	0.0135	0.0072	0.0039	0.0021
21	0.0926	0.0638	0.0531	0.0443	0.0309	0.0217	0.0109	0.0056	0.0029	0.0016
22	0.0826	0.0560	0.0462	0.0382	0.0262	0.0181	0.0088	0.0044	0.0022	0.0012
23	0.0738	0.0491	0.0402	0.0329	0.0222	0.0151	0.0071	0.0034	0.0017	0.0008
24	0.0659	0.0431	0.0349	0.0284	0.0188	0.0126	0.0057	0.0027	0.0013	0.0006
25	0.0588	0.0378	0.0304	0.0245	0.0160	0.0105	0.0046	0.0021	0.0010	0.0005
26	0.0525	0.0331	0.0264	0.0211	0.0135	0.0087	0.0037	0.0016	0.0007	0.0003
27	0.0469	0.0291	0.0230	0.0182	0.0115	0.0073	0.0030	0.0013	0.0006	0.0002
28	0.0419	0.0255	0.0200	0.0157	0.0097	0.0061	0.0024	0.0010	0.0004	0.0002
29	0.0374	0.0224	0.0174	0.0135	0.0082	0.0051	0.0020	0.0008	0.0003	0.0001
30	0.0334	0.0196	0.0151	0.0116	0.0070	0.0042	0.0016	0.0006	0.0002	0.0001
40	0.0107	0.0053	0.0037	0.0026	0.0013	0.0007	0.0002	0.0001	0.0000	0.0000
50	0.0035	0.0014	0.0009	0.0006	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000
60	0.0011	0.0004	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table A. 4 : Present Value Interest Factor for an Annuity
$\operatorname{PVIFA}(k, n)=\frac{(1+k)^{n}-1}{k(1+k)^{n}}$

n/i	1.0\%	2.0\%	3.0\%	4.0\%	5.0\%	6.0\%	7.0\%	8.0\%	9.0\%	10.0\%
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591	1.7355
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313	2.4869
4	3.9020	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121	3.2397	3.1699
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859	4.3553
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330	4.8684
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348	5.3349
9	8.5660	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952	5.7590
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446
11	10.3676	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951
12	11.2551	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137
13	12.1337	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034
14	13.0037	12.1062	11.2961	10.5631	9.8986	9.2950	8.7455	8.2442	7.7862	7.3667
15	13.8651	12.8493	11.9379	11.1184	10.3797	9.7122	9.1079	8.5595	8.0607	7.6061
16	14.7179	13.5777	12.5611	11.6523	10.8378	10.1059	9.4466	8.8514	8.3126	7.8237
17	15.5623	14.2919	13.1661	12.1657	11.2741	10.4773	9.7632	9.1216	8.5436	8.0216
18	16.3983	14.9920	13.7535	12.6593	11.6896	10.8276	10.0591	9.3719	8.7556	8.2014
19	17.2260	15.6785	14.3238	13.1339	12.0853	11.1581	10.3356	9.6036	8.9501	8.3649
20	18.0456	16.3514	14.8775	13.5903	12.4622	11.4699	10.5940	9.8181	9.1285	8.5136
21	18.8570	17.0112	15.4150	14.0292	12.8212	11.7641	10.8355	10.0168	9.2922	8.6487
22	19.6604	17.6580	15.9369	14.4511	13.1630	12.0416	11.0612	10.2007	9.4424	8.7715
23	20.4558	18.2922	16.4436	14.8568	13.4886	12.3034	11.2722	10.3711	9.5802	8.8832
24	21.2434	18.9139	16.9355	15.2470	13.7986	12.5504	11.4693	10.5288	9.7066	8.9847
25	22.0232	19.5235	17.4131	15.6221	14.0939	12.7834	11.6536	10.6748	9.8226	9.0770
26	22.7952	20.1210	17.8768	15.9828	14.3752	13.0032	11.8258	10.8100	9.9290	9.1609
27	23.5596	20.7069	18.3270	16.3296	14.6430	13.2105	11.9867	10.9352	10.0266	9.2372
28	24.3164	21.2813	18.7641	16.6631	14.8981	13.4062	12.1371	11.0511	10.1161	9.3066
29	25.0658	21.8444	19.1885	16.9837	15.1411	13.5907	12.2777	11.1584	10.1983	9.3696
30	25.8077	22.3965	19.6004	17.2920	15.3725	13.7648	12.4090	11.2578	10.2737	9.4269
40	32.8347	27.3555	23.1148	19.7928	17.1591	15.0463	13.3317	11.9246	10.7574	9.7791
50	39.1961	31.4236	25.7298	21.4822	18.2559	15.7619	13.8007	12.2335	10.9617	9.9148
60	44.9550	34.7609	27.6756	22.6235	18.9293	16.1614	14.0392	12.3766	11.0480	9.9672

Formulae and Tables

n/i	12.0\%	14.0\%	15.0\%	16.0\%	18.0\%	20.0\%	24.0\%	28.0\%	32.0\%	36.0\%
1	0.8929	0.8772	0.8696	0.8621	0.8475	0.8333	0.8065	0.7813	0.7576	0.7353
2	1.6901	1.6467	1.6257	1.6052	1.5656	1.5278	1.4568	1.3916	1.3315	1.2760
3	2.4018	2.3216	2.2832	2.2459	2.1743	2.1065	1.9813	1.8684	1.7663	1.6735
4	3.0373	2.9137	2.8550	2.7982	2.6901	2.5887	2.4043	2.2410	2.0957	1.9658
5	3.6048	3.4331	3.3522	3.2743	3.1272	2.9906	2.7454	2.5320	2.3452	2.1807
6	4.1114	3.8887	3.7845	3.6847	3.4976	3.3255	3.0205	2.7594	2.5342	2.3388
7	4.5638	4.2883	4.1604	4.0386	3.8115	3.6046	3.2423	2.9370	2.6775	2.4550
8	4.9676	4.6389	4.4873	4.3436	4.0776	3.8372	3.4212	3.0758	2.7860	2.5404
9	5.3282	4.9464	4.7716	4.6065	4.3030	4.0310	3.5655	3.1842	2.8681	2.6033
10	5.6502	5.2161	5.0188	4.8332	4.4941	4.1925	3.6819	3.2689	2.9304	2.6495
11	5.9377	5.4527	5.2337	5.0286	4.6560	4.3271	3.7757	3.3351	2.9776	2.6834
12	6.1944	5.6603	5.4206	5.1971	4.7932	4.4392	3.8514	3.3868	3.0133	2.7084
13	6.4235	5.8424	5.5831	5.3423	4.9095	4.5327	3.9124	3.4272	3.0404	2.7268
14	6.6282	6.0021	5.7245	5.4675	5.0081	4.6106	3.9616	3.4587	3.0609	2.7403
15	6.8109	6.1422	5.8474	5.5755	5.0916	4.6755	4.0013	3.4834	3.0764	2.7502
16	6.9740	6.2651	5.9542	5.6685	5.1624	4.7296	4.0333	3.5026	3.0882	2.7575
17	7.1196	6.3729	6.0472	5.7487	5.2223	4.7746	4.0591	3.5177	3.0971	2.7629
18	7.2497	6.4674	6.1280	5.8178	5.2732	4.8122	4.0799	3.5294	3.1039	2.7668
19	7.3658	6.5504	6.1982	5.8775	5.3162	4.8435	4.0967	3.5386	3.1090	2.7697
20	7.4694	6.6231	6.2593	5.9288	5.3527	4.8696	4.1103	3.5458	3.1129	2.7718
21	7.5620	6.6870	6.3125	5.9731	5.3837	4.8913	4.1212	3.5514	3.1158	2.7734
22	7.6446	6.7429	6.3587	6.0113	5.4099	4.9094	4.1300	3.5558	3.1180	2.7746
23	7.7184	6.7921	6.3988	6.0442	5.4321	4.9245	4.1371	3.5592	3.1197	2.7754
24	7.7843	6.8351	6.4338	6.0726	5.4509	4.9371	4.1428	3.5619	3.1210	2.7760
25	7.8431	6.8729	6.4641	6.0971	5.4669	4.9476	4.1474	3.5640	3.1220	2.7765
26	7.8957	6.9061	6.4906	6.1182	5.4804	4.9563	4.1511	3.5656	3.1227	2.7768
27	7.9426	6.9352	6.5135	6.1364	5.4919	4.9636	4.1542	3.5669	3.1233	2.7771
28	7.9844	6.9607	6.5335	6.1520	5.5016	4.9697	4.1566	3.5679	3.1237	2.7773
29	8.0218	6.9830	6.5509	6.1656	5.5098	4.9747	4.1585	3.5687	3.1240	2.7774
30	8.0552	7.0027	6.5660	6.1772	5.5168	4.9789	4.1601	3.5693	3.1242	2.7775
40	8.2438	7.1050	6.6418	6.2335	5.5482	4.9966	4.1659	3.5712	3.1250	2.7778
50	8.3045	7.1327	6.6605	6.2463	5.5541	4.9995	4.1666	3.5714	3.1250	2.7778
60	8.3240	7.1401	6.6651	6.2492	5.5553	4.9999	4.1667	3.5714	3.1250	2.7778

STANDARD NORMAL PROBABILITY DISTRIBUTION TABLE

$$
Z=\frac{x-\mu}{\sigma}
$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.49900

t DISTRIBUTION TABLE

$\mathrm{t}=\frac{\mathrm{x}-\mu}{\sigma}$

AREA IN THE RIGHT TAIL OF A CHI-SQUARE ($\boldsymbol{\chi}^{2}$) DISTRIBUTION TABLE

AREA IN THE RIGHT TAIL OF A CHI-SQUARE (χ^{2}) DISTRIBUTION TABLE

Note: If v, the number of degrees of freedom, is greater than 30 , we can approximate χ_{α}^{2}, the chi-square value leaving of the area in the right tail, by

$$
\chi_{\alpha}^{2}=v\left(1-\frac{2}{9 v}+z_{\alpha} \sqrt{\frac{2}{9 v}}\right)^{3}
$$

where z_{α} is the standard normal value that leaves α of the area in the right tail.

F DISTRIBUTION TABLE

Degrees of Freedom for Numerator																			
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.91	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
윢 11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
- 12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
- 13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
- 14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
- 15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
边 16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
¢ 17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
- ${ }_{\text {¢ }}$	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
$\text { 菦 } 19$	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

F DISTRIBUTION TABLE

							Degr	ees of	do	N	rato								
	1	2	3				7	8	9	10	12	15	20	24	30	40	60	120	∞
1	4,052	5,000	5,403	5,625	5,764	5,859	5,928	5,982	6,023	6,056	6,106	6,157	6,209	6,235	6,261	6,287	6,313	6,339	6,366
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	26.1
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
앙 11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
E 12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
-13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
$\stackrel{\square}{*}$	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.27	3.09	3.00
융 15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
- 17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.53	2.45	2.36	2.27	2.17
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

CONTROL CHART FACTORS TABLE

Factors for $\overline{\mathrm{x}}$ Charts			Factors for R Charts		
Sample Size, n	$\mathrm{d}_{2}=\frac{\mathrm{R}}{\sigma}$	$A_{2}=\frac{3}{d_{2} \sqrt{n}}$	$d_{3}=\frac{\sigma_{R}}{\sigma}$	$D_{3}=1-\frac{3 d_{3}}{d_{2}}$	$D_{4}=1+\frac{3 d_{3}}{d_{2}}$
2	1.128	1.881	0.853	0	3.269
3	1.693	0.023	0.888	0	2.574
4	2.059	0.729	0.880	0	2.282
5	2.326	0.577	0.864	0	2.114
6	2.534	0.483	0.848	0	2.004
7	2,704	0.419	0.833	0.076	1.924
8	2.847	0.373	0.820	0.136	1.864
9	2.970	0.337	0.808	0.184	1.186
10	3.078	0.308	0.797	0.223	1.777
11	3.173	0.285	0.787	0.256	1.744
12	3.258	0.266	0.779	0.283	1.717
13	3.336	0.249	0.770	0.308	1.692
14	3.407	0.235	0.763	0.328	1.672
15	3.472	0.223	0.756	0.347	1.637
16	3.532	0.212	0.750	0.363	1.637
17	3.588	0.203	0.744	0.378	1.622
18	3.640	0.194	0.739	0.391	1.609
19	3,689	0.187	0.734	0.403	1.597
20	3.735	0.180	0.729	0.414	1.586
21	3,778	0.173	0.724	0.425	1.575
22	3.819	0.167	0.720	0.434	1.566
23	3.858	0.162	0.716	0.443	1.557
24	3.895	0.157	0.712	0.452	1.548
25	3.931	0.153	0.708	0.460	1.540

Note: If $1-3 d_{3} / d_{2}<0$, then $D_{3}=0$.

Formulae and Tables

TABLE FOR VALUE OF CALL OPTION AS PERCENTAGE OF SHARE PRICE
Share Price Divided by PV (Exercise Price)

		0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.82	0.84	0.86	0.88	0.90	0.92	0.94	0.96	0.98	1.00
	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.6	1.2	2.0
	0.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.5	0.8	1.2	1.7	2.3	3.1	4.0
	0.15	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.7	1.0	1.3	1.7	2.2	2.8	3.5	4.2	5.1	6.0
	0.20	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.8	1.5	1.9	2.3	2.8	3.4	4.0	4.7	5.4	6.2	7.1	8.0
	0.25	0.0	0.0	0.0	0.1	0.2	0.5	1.0	1.8	2.8	3.3	3.9	4.5	5.2	5.9	6.6	7.4	8.2	9.1	9.9
	0.30	0.0	0.1	0.1	0.3	0.7	1.2	2.0	3.1	4.4	5.0	5.7	6.3	7.0	7.8	8.6	9.4	10.2	11.1	11.9
	0.35	0.1	0.2	0.4	0.8	1.4	2.3	3.3	4.6	6.2	6.8	7.5	8.2	9.0	9.8	10.6	11.4	12.2	13.0	13.9
	0.40	0.2	0.5	0.9	1.6	2.4	3.5	4.8	6.3	8.0	8.7	9.4	10.2	11.0	11.7	12.5	13.4	14.2	15.0	15.9
	0.45	0.5	1.0	1.7	2.6	3.7	5.0	6.5	8.1	9.9	10.6	11.4	12.2	12.9	13.7	14.5	15.3	16.2	17.0	17.8
	0.50	1.0	1.7	2.6	3.7	5.1	6.6	8.2	10.0	11.8	12.6	13.4	14.2	14.9	15.7	16.5	17.3	18.1	18.9	19.7
	0.55	1.7	2.6	3.8	5.1	6.6	8.3	10.0	11.9	13.8	14.6	15.4	16.1	16.9	17.7	18.5	19.3	20.1	20.9	21.7
	0.60	2.5	3.7	5.1	6.6	8.3	10.1	11.9	13.8	15.8	16.6	17.4	18.1	18.9	19.7	20.5	21.3	22.0	22.8	23.6
	0.65	3.6	4.9	6.5	8.2	10.0	11.9	13.8	15.8	17.8	18.6	19.3	20.1	20.9	21.7	22.5	23.2	24.0	24.7	25.5
	0.70	4.7	6.3	8.1	9.9	11.9	13.8	15.8	17.8	19.8	20.6	21.3	22.1	22.9	23.6	24.4	25.2	25.9	26.6	27.4
	0.75	6.1	7.9	9.8	11.7	13.7	15.8	17.8	19.8	21.8	22.5	23.3	24.1	24.8	25.6	26.3	27.1	27.8	28.5	29.2
	0.80	7.5	9.5	11.5	13.6	15.7	17.7	19.8	21.8	23.7	24.5	25.3	26.0	26.8	27.5	28.3	29.0	29.7	30.4	31.1
	0.85	9.1	11.2	13.3	15.5	17.6	19.7	21.8	23.8	25.7	26.5	27.2	28.0	28.7	29.4	30.2	30.9	31.6	32.2	32.9
	0.90	10.7	13.0	15.2	17.4	19.6	21.7	23.8	25.8	27.7	28.4	29.2	29.9	30.6	31.8	32.0	32.7	33.4	34.1	34.7
	0.95	12.5	14.8	17.1	19.4	21.6	23.	25.7	27.7	29.6	30.4	31.1	31.8	32.5	33.2	33.9	34.6	35.2	35.9	36.5
	1.00	14.3	16.7	19.1	21.4	23.6	25.7	27.7	29.7	31.6	32.3	33.0	33.7	34.4	35.1	35.7	36.4	37.0	37.7	38.3
	1.05	16.1	18.6	21.0	23.3	25.6	27.	29.7	31.6	33.5	34.2	34.9	35.6	36.2	36.9	37.6	38.2	38.8	39.4	40.0
	1.10	18.0	20.6	23.0	25.3	27.5	29.	31.6	33.5	35.4	36.1	36.7	37.4	38.1	38.7	39.3	40.0	40.6	41.2	41.6
	1.15	20.0	22.5	25.0	27.3	29.5	31.6	33.6	35.4	37.2	37.9	38.6	39.2	39.9	40.5	41.1	41.7	42.3	42.9	43.5
	1.20	21.9	24.5	27.0	29.3	31.5	33.6	35.5	37.3	39.1	39.7	40.4	41.0	41.7	42.3	42.9	43.5	44.0	44.6	45.1
	1.25	23.9	26.5	29.0	31.3	33.5	35.5	37.4	39.2	40.9	41.5	42.2	42.8	43.4	44.0	44.6	45.2	45.7	46.3	46.6
	1.30	25.9	28.5	31.0	33.3	35.4	37.4	39.3	41.0	42.7	43.3	43.9	44.5	45.1	45.7	46.3	46.8	47.4	47.9	48.4
	1.35	27.9	30.5	33.0	35.2	37.3	39.3	41.1	42.8	44.4	45.1	45.7	46.3	46.8	47.4	47.9	48.5	49.0	49.5	50.0
	1.40	29.9	32.5	34.9	37.1	39.2	41.1	42.9	44.6	46.2	46.8	47.4	47.9	48.5	49.0	49.6	50.1	50.6	51.1	51.6
	1.45	31.9	34.5	36.9	39.1	41.1	43.0	44.7	46.4	47.9	48.5	49.0	49.6	50.1	50.7	51.2	51.7	52.2	52.7	53.2
	1.50	33.8	36.4	38.8	40.9	42.9	44.8	45.5	48.1	49.6	50.1	50.7	51.2	51.8	52.3	52.8	53.3	53.7	54.2	54.7
	1.55	35.8	38.4	40.7	42.8	44.8	46.6	48.2	49.8	51.2	51.8	52.3	52.8	53.3	53.8	54.3	54.8	55.3	55.7	56.2
	1.60	37.8	40.3	42.6	44.6	46.5	48.3	49.9	51.4	52.8	53.4	53.9	54.4	54.9	55.4	55.9	56.3	56.8	57.2	57.6
	1.65	39.7	42.2	44.4	46.4	48.3	50.0	51.6	53.1	54.4	54.9	55.4	55.9	56.4	56.9	57.3	57.8	58.2	58.6	59.1
	1.70	41.6	44.0	46.2	48.2	50.0	51.7	53.2	54.7	56.0	56.5	57.0	57.5	57.9	58.4	58.8	59.2	59.7	60.1	60.5
	1.75	43.5	45.9	48.0	50.0	51.7	53.4	54.8	56.2	57.5	58.0	58.5	58.9	59.4	59.8	60.2	60.7	61.1	61.5	61.8
	2.00	52.5	54.6	56.5	58.2	59.7	61.1	62.4	63.6	64.6	65.0	65.4	65.8	66.2	66.6	66.9	67.3	67.6	67.9	68.3
	2.25	60.7	62.5	64.1	65.6	66.8	68.0	69.1	70.0	70.9	71.3	71.6	71.9	72.2	72.5	72.8	73.1	73.4	73.7	73.9
	2.50	67.9	69.4	70.8	72.0	73.1	74.0	74.9	75.7	76.4	76.7	77.0	77.2	77.5	77.7	78.0	78.2	78.4	78.7	78.9
	2.75	74.2	75.4	76.6	77.5	78.4	79.2	79.9	80.5	81.1	81.4	81.6	81.8	82.0	82.2	82.4	82.6	82.7	82.9	83.1
	3.00	79.5	80.5	81.4	82.2	82.9	83.5	84.1	84.6	85.1	85.3	85.4	85.6	85.8	85.9	86.1	86.2	86.4	86.5	86.6
	3.50	87.6	88.3	88.8	89.3	89.7	90.1	90.5	90.8	91.1	91.2	91.3	91.4	91.5	91.6	91.6	91.7	91.8	91.9	92.0
	4.00	92.9	93.3	93.6	93.9	94.2	94.4	94.6	94.8	94.9	95.0	95.0	95.1	95.2	95.2	95.3	95.3	95.4	95.4	95.4
	4.50	96.2	96.4	96.6	96.7	96.9	97.0	97.1	97.2	97.3	97.3	97.3	97.4	97.4	97.4	97.5	97.5	97.5	97.5	97.6
	5.00	98.1	98.2	98.3	98.3	98.4	98.5	98.5	98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.8

Share Price Divided by PV (Exercise Price)

		1.02	1.04	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.75	2.00	2.50
	0.05	3.1	4.5	6.0	7.5	9.1	10.7	12.3	13.8	15.3	16.7	20.0	23.1	25.9	28.6	31.0	33.3	42.9	50.0	60.0
	0.10	5.0	6.1	7.3	8.6	10.0	11.3	12.7	14.1	15.4	16.8	20.0	23.1	25.9	28.6	31.0	33.3	42.9	50.0	60.0
	0.15	7.0	8.0	9.1	10.2	11.4	12.6	13.8	15.0	16.2	17.4	20.4	23.3	26.0	28.6	31.1	33.3	42.9	50.0	60.0
	0.20	8.9	9.9	10.9	11.9	13.0	14.1	15.2	16.3	17.4	18.5	21.2	23.9	26.4	28.9	31.2	33.5	42.9	50.0	60.0
	0.25	10.9	11.8	12.8	13.7	14.7	15.7	16.7	17.7	18.7	19.8	22.3	24.7	27.1	29.4	31.7	33.8	42.9	50.0	60.0
	0.30	12.8	13.7	14.6	15.6	16.5	17.4	18.4	19.3	20.3	21.2	23.5	25.8	28.1	30.2	32.3	34.3	43.1	50.1	60.0
	0.35	14.8	15.6	16.5	17.4	18.3	19.2	20.1	21.0	21.9	22.7	24.9	27.1	29.2	31.2	33.2	35.1	43.5	50.2	60.0
	0.40	16.7	17.5	18.4	19.2	20.1	20.9	21.8	22.6	23.5	24.3	26.4	28.4	30.4	32.3	34.2	36.0	44.0	50.5	60.1
	0.45	18.6	19.4	20.3	21.1	21.9	22.7	23.5	24.3	25.1	25.9	27.9	29.8	31.7	33.5	35.3	37.0	44.6	50.8	60.2
	0.50	20.5	21.3	22.1	22.9	23.7	24.5	25.3	26.1	26.8	27.6	29.5	31.3	33.1	34.8	36.4	38.1	45.3	51.3	60.4
	0.55	22.4	23.2	24.0	24.8	25.5	26.3	27.0	27.8	28.5	29.2	31.0	32.8	34.5	36.1	37.7	39.2	46.1	51.9	60.7
	0.60	24.3	25.1	25.8	26.6	27.3	28.1	28.8	29.5	30.2	30.9	32.6	34.3	35.9	37.5	39.0	40.4	47.0	52.5	61.0
	0.65	26.2	27.0	27.7	28.4	29.1	29.8	30.5	31.2	31.9	32.6	34.2	35.8	37.4	38.9	40.3	41.7	48.0	53.3	61.4
	0.70	28.1	28.8	29.5	30.2	30.9	31.6	32.3	32.9	33.6	34.2	35.8	37.3	38.8	40.3	41.6	43.0	49.0	54.0	61.9
	0.75	29.9	30.6	31.3	32.0	32.7	33.3	34.0	34.6	35.3	35.9	37.4	38.9	40.3	41.7	43.0	44.3	50.0	54.9	62.4
	0.80	31.8	32.4	33.1	33.8	34.4	35.1	35.7	36.3	36.9	37.5	39.0	40.4	41.8	43.1	44.4	45.6	51.1	55.8	63.0
	0.85	33.6	34.2	34.9	35.5	36.2	36.8	37.4	38.0	38.6	39.2	40.6	41.9	43.3	44.5	45.8	46.9	52.2	56.7	63.6
	0.90	35.4	36.0	36.6	37.3	37.9	38.5	39.1	39.6	40.2	40.8	42.1	43.5	44.7	46.0	47.1	48.3	53.3	57.6	64.3
	0.95	37.2	37.8	38.4	39.0	39.6	40.1	40.7	41.3	41.8	42.4	43.7	45.0	46.2	47.4	48.5	49.6	54.5	58.6	65.0
	1.00	38.9	39.5	40.1	40.7	41.2	41.8	42.4	42.9	43.4	44.0	45.2	46.5	47.6	48.8	49.9	50.9	55.6	59.5	65.7
	1.05	40.6	41.2	41.8	42.4	42.9	43.5	44.0	44.5	45.0	45.5	46.8	48.0	49.1	50.2	51.2	52.2	56.7	60.5	66.5
	1.10	42.3	42.9	43.5	44.0	44.5	45.1	45.6	46.1	46.6	47.1	48.3	49.4	50.5	51.6	52.6	53.5	57.9	61.5	67.2
	1.15	44.0	44.6	45.1	45.6	46.2	46.7	47.2	47.7	48.2	48.6	49.8	50.9	51.9	52.9	53.9	54.9	59.0	62.5	68.0
	1.20	45.7	46.2	46.7	47.3	47.8	48.3	48.7	49.2	49.7	50.1	51.3	52.3	53.3	54.3	55.2	56.1	60.2	63.5	68.8
	1.25	47.3	47.8	48.4	48.8	49.3	49.8	50.3	50.7	51.2	51.6	52.7	53.7	54.7	55.7	56.6	57.4	61.3	64.5	69.6
	1.30	48.9	49.4	49.9	50.4	50.9	51.3	51.8	52.2	52.7	53.1	54.1	55.1	56.1	57.0	57.9	58.7	62.4	65.5	70.4
	1.35	50.5	51.0	51.5	52.0	52.4	52.9	53.3	53.7	54.1	54.6	55.6	56.5	57.4	58.3	59.1	59.9	63.5	66.5	71.1
	1.40	52.1	52.6	53.0	53.5	53.9	54.3	54.8	55.2	55.6	56.0	56.9	57.9	58.7	59.6	60.4	61.2	64.6	67.5	71.9
	1.45	53.6	54.1	54.5	55.0	55.4	55.8	56.2	56.6	57.0	57.4	58.3	59.2	60.0	60.9	61.6	62.4	65.7	68.4	72.7
	1.50	55.1	55.6	56.0	56.4	56.8	57.2	57.6	58.0	58.4	58.8	59.7	60.5	61.3	62.1	62.9	63.6	66.8	69.4	73.5
	1.55	56.6	57.0	57.4	57.8	58.2	58.6	59.0	59.4	59.7	60.1	61.0	61.8	62.6	63.3	64.1	64.7	67.8	70.3	74.3
	1.60	58.0	58.5	58.9	59.2	59.6	60.0	60.4	60.7	61.1	61.4	62.3	63.1	63.8	64.5	65.2	65.9	68.8	71.3	75.1
	1.65	59.5	59.9	60.2	60.6	61.0	61.4	61.7	62.1	62.4	62.7	63.5	64.3	65.0	65.7	66.4	67.0	69.9	72.2	75.9
	1.70	60.9	61.2	61.6	62.0	62.3	62.7	63.0	63.4	63.7	64.0	64.8	65.5	66.2	66.9	67.5	68.2	70.9	73.1	76.6
	1.75	62.2	62.6	62.9	63.3	63.6	64.0	64.3	64.6	64.9	65.3	66.0	66.7	67.4	68.0	68.7	69.2	71.9	74.0	77.4
	2.00	68.6	68.9	69.2	69.5	69.8	70.0	70.3	70.6	70.8	71.1	71.7	72.3	72.9	73.4	73.9	74.4	76.5	78.3	81.0
	2.25	74.2	74.4	74.7	74.9	75.2	75.4	75.6	75.8	76.0	76.3	76.8	77.2	77.7	78.1	78.5	78.9	80.6	82.1	84.3
	2.50	79.1	79.3	79.5	79.7	79.9	80.0	80.2	80.4	80.6	80.7	81.1	81.5	81.9	82.2	82.6	82.9	84.3	85.4	87.2
	2.75	83.3	83.4	83.6	83.7	83.9	84.0	84.2	84.3	84.4	84.6	84.9	85.2	85.5	85.8	86.0	86.3	87.4	88.3	89.7
	3.00	86.8	86.9	87.0	87.1	87.3	87.4	87.5	87.6	87.7	87.8	88.1	88.3	88.5	88.8	89.0	89.2	90.0	90.7	91.8
	3.50	92.1	92.1	92.2	92.3	92.4	92.4	92.5	92.6	92.6	92.7	92.8	93.0	93.1	93.3	93.4	93.5	94.0	94.4	95.1
	4.00	95.5	95.5	95.6	95.6	95.7	95.7	95.7	95.8	95.8	95.8	95.9	96.0	96.1	96.2	96.2	96.3	96.6	96.8	97.2
	4.50	97.6	97.6	97.6	97.6	97.7	97.7	97.7	97.7	97.8	97.8	97.8	97.9	97.9	97.9	98.0	98.0	98.2	98.3	98.5
	5.00	98.8	98.8	98.8	98.8	98.8	98.8	98.8	98.8	98.9	98.9	98.9	98.9	98.9	99.0	99.0	99.0	99.1	99.1	99.2

Table for $\mathbf{N}(\mathbf{x})$ When $\mathrm{x} \leq 0$
This table shows values of $N(x)$ for $x \leq 0$. The table should be used with interpolation. For example,

			(-0.12		$\begin{aligned} & =\mathrm{N}(-0.12)-0.34[\mathrm{~N}(-0.12)-\mathrm{N}(-0.13)] \\ & =0.4522-0.34 \times(0.4522-0.4483) \\ & =0.4509 \end{aligned}$					
x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-3.0	0.0014	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-4.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table for $N(x)$ When $x \geq 0$

This table shows values of $N(x)$ for $x \geq 0$. The table should be used with interpolation. For example,

$$
\begin{aligned}
\mathrm{N}(0.6278) & =\mathrm{N}(0.62)+0.78[\mathrm{~N}(0.63)-\mathrm{N}(0.62)] \\
& =0.7324+0.78 \times(0.7357-0.7324) \\
& =0.7350
\end{aligned}
$$

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

TABLE FOR RELATIONSHIP BETWEEN NOMINAL AND EFFECTIVE RATES OF INTEREST AND DISCOUNT

$$
\begin{array}{ll}
i^{(p)}=\left[(1+i)^{1 / p}-1\right] p & d^{(p)} \\
=\left[1-(1-d)^{1 / p}\right] p \\
d & =\frac{i}{1+i}
\end{array}
$$

	${ }^{(2)}$	${ }^{\text {(4) }}$	$j^{(12)}$	d	$\mathrm{d}^{(2)}$	$\mathrm{d}^{(4)}$	$\mathrm{d}^{(12)}$
0.01	0.0100	0.0100	0.0100	0.0099	0.0099	0.0099	0.0099
0.02	0.0199	0.0199	0.0198	0.0196	0.0197	0.0198	0.0198
0.03	0.0298	0.0297	0.0296	0.0291	0.0293	0.0294	0.0295
0.04	0.0396	0.0394	0.0393	0.0385	0.0388	0.0390	0.0392
0.05	0.0494	0.0491	0.0489	0.0476	0.0482	0.0485	0.0487
0.06	0.0591	0.0587	0.0584	0.0566	0.0574	0.0578	0.0581
0.07	0.0688	0.0682	0.0678	0.0654	0.0665	0.0671	0.0675
0.08	0.0785	0.0777	0.0772	0.0741	0.0755	0.0762	0.0767
0.09	0.0881	0.0871	0.0865	0.0826	0.0843	0.0853	0.0859
0.10	0.0976	0.0965	0.0957	0.0909	0.0931	0.0942	0.0949
0.11	0.1071	0.1057	0.1048	0.0991	0.1017	0.1030	0.1039
0.12	0.1166	0.1149	0.1139	0.1071	0.1102	0.1117	0.1128
0.13	0.1260	0.1241	0.1228	0.1150	0.1186	0.1204	0.1216
0.14	0.1354	0.1332	0.1317	0.1228	0.1268	0.1289	0.1303
0.15	0.1448	0.1422	0.1406	0.1304	0.1350	0.1373	0.1390
0.16	0.1541	0.1512	0.1493	0.1379	0.1430	0.1457	0.1475
0.17	0.1633	0.1601	0.1580	0.1453	0.1510	0.1540	0.1560
0.18	0.1726	0.1690	0.1667	0.1525	0.1589	0.1621	0.1644
0.19	0.1817	0.1778	0.1752	0.1597	0.1666	0.1702	0.1727
0.20	0.1909	0.1865	0.1837	0.1667	0.1743	0.1782	0.1809
0.21	0.2000	0.1952	0.1921	0.1736	0.1818	0.1861	0.1891
0.22	0.2091	0.2039	0.2005	0.1803	0.1893	0.1940	0.1972
0.23	0.2181	0.2125	0.2088	0.1870	0.1967	0.2017	0.2052
0.24	0.2271	0.2210	0.2171	0.1935	0.2039	0.2094	0.2132
0.26	0.2450	0.2379	0.2334	0.2063	0.2183	0.2246	0.2289
0.28	0.2627	0.2546	0.2494	0.2188	0.2322	0.2394	0.2443
0.30	0.2804	0.2712	0.2653	0.2308	0.2459	0.2539	0.2595
0.32	0.2978	0.2875	0.2809	0.2424	0.2592	0.2682	0.2744
0.34	0.3152	0.3036	0.2963	0.2537	0.2723	0.2822	0.2891
0.36	0.3324	0.3196	0.3115	0.2647	0.2850	0.2960	0.3036
0.38	0.3495	0.3354	0.3264	0.2754	0.2975	0.3095	0.3178
0.40	0.3664	0.3510	0.3412	0.2857	0.3097	0.3227	0.3318

TABLE FOR RELATIONSHIP BETWEEN NOMINAL AND
EFFECTIVE RATES OF INTEREST AND DISCOUNT

Formulae Index

Accounting rate of return 41
Accumulated Value of

- deferred annuity certain 2
- deferred annuity due 3
- annuity due $3,4,6,7,12,15-16,19$
- annuity $2,3,4-7,10,12-16,19$
- immediate annuity $2,3,5-7,12,14$, 16, 19
- increasing annuity 4,5
- increasing annuity due 4
- increasing immediate annuity 5,6

Add on yield 55
Alpha 30
Altman's Z score model 91
Amount of level premium to be paid 19
Annualized percentage premium 50
Annuity

- accumulated value 1-7
- present value 2-7, 11-16, 19
- net single premium 14

ANOVA 83

APV of a foreign project 51
Arbitrage possibility 50
Arithmetic mean 73, 74, 76
Asset beta 67
Average fixed cost
Average interest yield on the life fund 8
Average of relatives method 82
Average product of labor 22
Average propensity 25

- to consume 25
- to save 25

Basis point value 45
Baumol cash management model 41
Benefit-cost ratio 42
Beta of

- asset 67
- security 29

BHW model 54
Binomial distribution 77
Binomial option pricing model 46, 67
Black-Scholes option pricing model 46,68

Bond

- valuation 31
- change in value of 45
- duration of a perpetual 86
- duration on selling at par 85
- present value of 85
- transaction price of 44,67
- treasury implied repo rate 45

Bower's model 54
Break-even

- point 58
- output 23
- financial 35
- operating 35
period 88
size of investment 52
Budget constraint 21
B Ü HLAMANN Credibility 17
Call option
- delta of 48
- gamma of 49
- pay-off from buying an option 45
- parity equation 46
- rho for a european option 49
- theta of 48-49
- vega of 49

Capital account balance 26
Capital recovery factor 2,28
Capital redemption policies 7
Cash flow from the view point of

- long-term funds 66
- equity 66

Cash management

- Baumol model 41,90
- Miller and Orr model 41, 91

Cash price of futures 44
Central death rate 10
Chain index numbers 82
Change in value of a bond 45
Chi-square statistic for a sample variance 84
Chi-square statistic 83, 84
Children's Deferred assurances 14

Coefficient

- of determination 79
- of multiple correlation 80
- of variation 75
- Karl Pearson's correlation 79
- Rank correlation 79

Combined standard deviation of two groups 75

Commutation Functions 11
Conn \& Nielson model 92
Consumer credit 56
Consumer equilibrium 21
Conversion parity price 88
Conversion premium 88
Corporate dividend behavior 38
Correlation Co-efficient 63
Cost constraint of a firm 22
Cost of

- debentures 35
- equity capital 36-38
- preference capital 35-36
- term loans 35

Cost performance index 68-69
Covariance 29, 76, 61, 63, 90
Coverage ratios 32
Cross price elasticity of demand 20
Crude death rate 8
Current account balance 26
Current yield 31, 85, 86, 88
Cyclical variation 81
Daily volatility 49
Deferred

- accumulated value 1,2
- present value 2-7,10-16
- children's assurances 14

Definite integral 72
Degree of

- financial leverage 34
- operating leverage 34
- total leverage 34

Degrees of freedom in a contingency table 83

Delta for

- call 48
- put 48
- portfolio of derivatives 48

Dependency ratio 9
Discriminate analysis 90
Dividend Policy

- corporate dividend behavior 38
- Gordon model 37
- MM approach 38
- traditional model 37
- Walter model 37

Domestic resource cost 67
Doubling period 1
Duration

- at various stages of production 38
- of perpetual bond 86
- of bond selling at par 86
- of equity 87
- limiting value of 86
- modified 87
- number of future contract 45,65
simplified formula 86
EBIT - EPS indifference point 89
Economic order quantity 39
Effect of changing the credit variables 40
Effective price in futures 43
Effective rate of interest 28,56
Effective rate of protection 67
Effective vs. nominal rate of interest 1
Efficient input combination 22
Elasticity
- cross 20
- income 20
- interest rate 86
- price 20
- supply 23
- promotional 21

Empirical mode 74
Equilibrium

- consumer 21
- income 25
- goods market 25
- money market 26

Equity valuation 31
Equivalent loan model 53
Error sum of squares 79
Estimated

- cost performance index 68,69
- probability of deaths 9
- return on a stock 43

Expectations of life 10

Expected

- return and variance 43
- aggregate loss 18
- net present value 67
- standard deviation 67
- rate of return 31
- return of a portfolio 62
- arbitrage pricing theory 61
- time in project scheduling 68
- utility of asset mix 62
- value 75

Exponential distribution 9
Extended probabilistic analysis 89
External financing requirement 33
Factors influencing option prices 46
Fertility rates 8
Finance interrelation ratio 26
Finance ratio 26
Financial break-even point 35
Fiscal deficit 27
Fisher's ideal

- price index 81
- quantity index 81

Future Value 1,28
Futures

- effective price 43
- margin 43
- number contracts 65
- cash price 43

Gamma distribution 18
Gamma of call or put 49
Geometric mean 74
GNP deflator 24
Goods market equilibrium 25
Gross yield 55
Harmonic mean 74
Hedge Ratio 44
Herfindahl's index 24
High powered money 26
Hire Purchase

- finance company's angle 56
- hirer's angle 55

Historical (ex post)

- return 43
- variance 43
- standard deviation 43

Holding period yield 62
Housing finance

- disbursement amount 57
- equated monthly installments 57

Hypergeometric distribution 77
Implied repo rate 44, 45
Income elasticity of demand 20
Index

- chain 82
- cost performance 68,69
- estimated cost performance 69
- Fisher's price and quantity 82
- Laspeyre's price and quantity 81
- Lerner monopoly power 24
- Marshall Edgeworth price 82
- odd-lot 87,88
- Paasche's price 81
- schedule performance 68
- Herfindahl's 24

Laspeyre price 24
unweighted aggregates price 81

- value 81

Inference about two population variances 84
Integration 71
Interest rate

- elasticity 86
- parity 50
- risk 86

Interest rebate 56
Intermediation ratio 26
Internal rate of return $37,42,55,66$

- after tax cost of leasing 55
- implied repo rate 44
- based pricing 55
- Modified 66, 86

Interpolation and Extrapolation 72
Intrinsic value or present value of

- equity share 87
- bond 85

Jensen's differential return 64
Karl Pearson's correlation coefficient 79
Labor

- cost variance 59,60
- efficiency variance 59,60
- efficiency sub-variance 60
- mix variance 59,60
- rate variance 59,60
- yield variance 59,60

Laspeyre's

- price index $24,81,82$
- quantity index 82

Lerner index of monopoly power 24
Leverage

- ratios 32
- financial 34
- operating 34
- total 34

Limiting value of duration 86
Liquidity ratios 32
Loading profit that is profit due to lower expenses 19
Logarithms 70
Lognormal distribution 17
Margin 59

- futures 59
- of safety 59

Marginal

- cost 23,24
- product of labor 22
- propensity to consume 25
- rate of substitution 21
- rate of technical substitution 22
- revenue 23,24

Market price of the property 88
Marriage rates 8
Marshall Edgeworth price index 82
Material

- cost variance 59
- mix variance 59
- price variance 59
- usage variance 59
- sub-usage variance 59
- yield variance 59

Mean

- arithmetic 73,74
- geometric 74
- harmonic 74
- collective risk model 18
- absolute deviation 74
- weighted arithmetic 73
- weighted harmonic 74

Median 73
Migration rates of area 9
Miller and Orr model 41, 91

Minimum variance hedge ratio 44
Mode 74
Models

- Altman's Z score 91
- Baumol cash management 41,90
- Binomial option pricing 41,90
- Black-Scholes option pricing 46, 98
- BHW 54
- Bower's 54
- cash management 41,90
- Conn \& Nielson 92
- Gordon dividend policy model 37
- MM dividend policy 37
- traditional dividend policy 37
- Walter dividend policy 37
- Equivalent loan 53
- individual risk 18 collective risk 18
Miller and Orr cash management 41
CAPM 29, 43, 52, 61
Weingartner's 53

Modified

- duration 86
- net present value 66
- internal rate of return 66

Money market equilibrium 26
Money supply 26
Multiple regression equation 80
Multiplier

- income 26
- money 26

Net acquisition value 91
Net advantage of leasing (NAL) 54
Net annual premium 14
Net Asset Value 88
Net operating cycle period 38
Net present value $41,42,57,66$

- modified 66
- venture capital 57
- expected 67

Net-benefit-cost ratio 42
New issue ratio 26
Nominal rate 28
Number of futures contracts 65
Odd-lot

- index 87
- short sales ratio 88

Office premium 8, 16, 19
Operating break-even point 35
Operating cycle

- Net 38
- Weighted 38

Optimal portfolio selection using sharpe's optimization 62
Option pricing

- Binomial model 46,67
- Black-Scholes model 49

Output determination in oligopoly 24
Overall break even point 35
Overall capitalization rate of the firm 36
p Charts 83
Paasche's price index 81
Pareto distribution 18
Partial derivatives 71
Pay-off from Buying a

- call option 45
- put option 45

Payback period 88

Percentage of downside risk 88
Percentage price volatility 86
Permutations and combinations 70
Poisson distribution 16, 17, 77
Policy value for a whole life assurance policy 19

Policy value under prospective method 19
Population standard deviation 74
Portfolio insurance 49
Premiums

- office $8,16,19$
- for additional risks 15
- when frequency of payment is m times a year 15
Present Value of
- deferred annuity 2,3,14
- deferred annuity certain 2
- deferred annuity due 3
- deferred life annuity 12
- deferred perpetuity 3
- deferred temporary immediate life annuity 13
- life annuity 13
- perpetuity 2
- perpetuity due 3,4
- temporary immediate life annuity 12,13
- annuity due $2-4,6,7,12,15,16,19$
- immediate annuity certain 2, 3
- immediate annuity $2,3,5-7,12,14$, 16, 19
- immediate increasing perpetuity 4
- immediate increasing annuity 4
- immediate perpetuity 3
- increasing annuity 4,5
- increasing annuity due 4
- increasing life annuity in terms of commutation function 13
- increasing perpetuity due 4
- increasing whole life assurance 11,12
- assurance benefits to the insured in terms of the commutation functions 11
- benefits $10,11,19$
- rental stream 54
- perpetuity 2-4, 28
annuity 15
decreasing term assurance policy 14
term assurance 10
standard for full credibility for severity 17
- interest tax shield 53,54

Price elasticity of

- demand 20
- supply 21

Primary deficit 27
Probability 75
Probability that a person of age x years

- dies in another n years 10
- dies within one year 9, 10
- dies within the next n years 10
- survives another one year 10
- survives another n years 10
- will die within n years following m years from now 10
Process variance for pure premium 17
Product of labor
- average product of labor 22
- marginal product of labor 22

Profit maximization in

- monopoly 23
- perfect competition 23

Profit of a firm 23
Profit/Volume ratio 58
Profitability ratios 33
Progressions 70
Promotional elasticity of demand 21

Propensity

- to consume, save (average) 25
- to consume, save (marginal) 25

Put

- delta for 48
- gamma of 49
- pay-off from buying an option 45
- parity equation 46
- rho for a European option 49
- theta of 48,49
- vega of 49

Quartile deviation 74
R Charts 83, 109
Rank correlation coefficient 79
Rate of return 29
Ratios

- benefit-cost 42
- coverage 32
- dependency 9
- finance interrelation 26
- finance 26
- hedge 44, 45,67
- intermediation 26
- leverage 32
- liquidity 32
- minimum variance hedge 44
- net-benefit-cost 42
- new issue 26
- odd-lot short sales 88
- profit/volume 58
- profitability 33
- Sharpe's 62,64
- Treynor's 64
- turnover 33
- benefit-cost 42

Realized yield 85
Regression line 79
Regression sum of squares 79
Relation between

- EBIT and EPS 89
- ROI and ROE 89

Reorder point 39
Return

- accounting rate of 41
- estimated 43
- expected (of security) 30
- expected (of portfolio) 61
- under arbitrage pricing theory 6
- Historical (ex post) 43
- Internal rate or cost of leasing 54, 55
- Internal rate of return 37, 42
- Jensen's differential 64
- under CAPM model $29,43,52,61$
- from net selectivity 64
- from total selectivity 64

Revenue deficit 27
Rho for a European

- call option 49
- put option 49

RS and RSI 121
Rules of differentiation 70
Sample standard deviation 75, 78, 79
Schedule performance index 68
Secular trend 80
Security

- Beta of 29

Systematic risk of 30
Unsystematic risk of 63
Share price Ex-Rights 53
Sharpe's ratio 64
Simplified formula for duration 85
Sinking fund factor 1,28
Standard deviation 17, 29, 43, 44, 49, 63, $67,68,75,79,82,110,111$

- combined (two groups) 75, 78, 104
- expected 75
- historical 43
- population 74
- sample 74

Standard error 78-80

- a simple regression equation 79
- a multiple regression equation 80

Standard normal variable 77
Stochastics 88
Suggested framework for lease evaluation 54
Sustainable growth rate 34
Systematic risk of

- security 30
- portfolio 63

Tax-adjusted CAPM 61
Tax burden on the buyer 23
T-bill purchase price 44
t-distribution 78
Theta of

- call 48
- put 49

Total

- cost 22
- portfolio variance 63
- sum of squares 79

Trade balance 26
Transaction price of the bond 44,67
Treasury bond implied repo rate 45
Treynor's ratio 64
Turnover of primary/satellite dealer 53
Turnover ratios 33
Unsystematic risk of a security and portfolio 30, 62, 63

Unweighted aggregates price index 81
Valuation

- bond 31
- equity 31
- convertible 32
- currency swaps 48
- firms 91
- interest rate swaps 48

Value index number 82
Value of

- right 53
- share after the rights issue 53

Variance

- chi-square statistic for a sample variance 84
- covariance 90
- Expected 43, 61, 63
- historical (ex-post) 43
- inference about two population 84
- labor cost 59,60
- labor efficiency 60
- labor efficiency sub 60
- labor mix 60
- labor rate 60
- labor yield 60
- material cost 59
- material mix 59
- material price 59
- material usage 59
- material sub-usage 59
- material yield 59
- minimum hedge ratio 44
- process (for pure premium) 17
- portfolio 65,67
- in collective risk model 18
- in individual risk model 18
- in project scheduling 68
- portfolio 67
- asset 29
- returns on foreign investment 51

Vega of call or put 49
Velocity of money 26
Weibull distribution 9

Weighted

- arithmetic mean 73
- average cost of capital 36
- harmonic mean 74
- operating cycle 38

Weingartner's model 53
$\overline{\mathrm{X}}$ - Charts 82
Yield

- current 88
- gross 55
- realized 85
- average interest (on the life fund) 8
- holding period 29,62
- labor variance 60
- material variance 59
- to maturity $31,32,45,85,86$

